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Abstract Species distribution models (SDMs) are often used during the planning stage of reintroduction pro-
grammes to model species’ occurrence with the aim of selecting potential release sites. However, for many
endangered species, only a low number of records are available, leading to models with low accuracy. When
planning reintroductions for rare species, an alternative approach may be to model surrogate species that are
more abundant or easier to locate. Here, we modelled the distribution of white gum (Eucalyptus viminalis), the
preferred food tree of the forty-spotted pardalote (Pardalotus quadragintus), a rare songbird for which reintroduc-
tion has been proposed. Using boosted regression trees, we modelled white gum distribution under current and
future climate conditions with the aim of identifying areas of high probability of occurrence that later can be
used to plan on ground habitat assessments for reintroductions. Our model show areas with high probability of
white gum occurrence outside its currently mapped distribution, indicating that there may be opportunities for
reintroduction of pardalotes beyond their current range. Predictions of future climate scenarios showed climate
space shifts, not only with some decrease but also with substantial increase in the probability of suitability for
occurrence under some scenarios. Our spatial predictions for white gum may be used to design a survey to
ground-truth our model and undertake a comprehensive habitat assessment for other habitat features forty-
spotted pardalotes need to persist. The approach used in our study may be used for other highly specialized spe-
cies, not only in the context of reintroduction planning but also in the general management of data-poor special-
ist species that depend on a more common resource.

Key words: climate change, conservation planning, conservation translocation, endangered species, specialist
species, species distribution models.

INTRODUCTION

Conservation translocations (i.e. the intentional
movement of individuals to restore populations) are
increasingly used in attempts to recover populations
of threatened species with the aim to establish self-
sustaining populations (IUCN/SSC 2013; Seddon
et al. 2014). However, reintroductions generally have
low success rates, and insufficient knowledge about
habitat quality at the release site is a major source of

failure (Griffith et al. 1989; Wolf et al. 1998; Osborne
& Seddon 2012; Taylor et al. 2017). Low success
due to habitat quality is attributed to the complexity
of defining what constitutes habitat for a species.
This is because habitat is a complex interaction of
physical and biotic components, including food, shel-
ter, competitors and predators (Armstrong & Sed-
don 2008; Osborne & Seddon 2012). Consequently,
habitat for reintroductions should be assessed as a
species-specific set of resources and environmental
conditions that enable a population to persist (Hall
et al. 1997; Armstrong & Seddon 2008; Stadtmann
& Seddon 2020). This also includes considering cli-
mate change, because areas suitable for reintroduc-
tion today may be unsuitable in the future
(Seddon 2010; Osborne & Seddon 2012). Therefore,

*Corresponding author.
Fernanda Alves, Division of Ecology and Evolution, Research
School of Biology, Australian National University, 134 Lin-
naeus Way, Acton ACT 2601, AUS.
Email: fernanda.alves@anu.edu.au
Accepted for publication June 2022.

© 2022 The Authors. Austral Ecology published by John Wiley & Sons Australia, Ltd
on behalf of Ecological Society of Australia.

doi:10.1111/aec.13221

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Austral Ecology (2022) ��, ��–��

https://orcid.org/0000-0001-8825-6358
https://orcid.org/0000-0001-8825-6358
https://orcid.org/0000-0002-1176-3244
https://orcid.org/0000-0002-1176-3244
mailto:


the selection of sites for reintroduction requires care-
ful planning, and species distribution models
(SDMs) are a good starting point to address this
uncertainty (Osborne & Seddon 2012).
SDMs are often used in reintroduction pro-

grammes to help identify sites where there is high
chance of meeting a species’ needs (e.g. Mart�ınez-
Meyer et al. 2006; Kalle et al. 2017; Maes
et al. 2019). However, for many endangered species,
the low number of records available may lead to
inaccurate or inadequate models for conservation
planning (Wisz et al. 2008). Further, for species that
have undergone substantial decline, they might no
longer occupy the core of their former distribution,
therefore what few locations exist on extant popula-
tions might not fully reveal the best habitat condi-
tions (e.g. Kuemmerle et al. 2012). When planning
reintroductions for rare species, an alternative
approach may be to model surrogate species that are
more abundant or easier to locate. Selecting surro-
gates may be relatively straightforward in the case of
habitat specialists that, for example might depend on
co-occurrence with a small number of other species
for food or shelter (Futuyma & Moreno 1988; Devic-
tor et al. 2010). A key side benefit of such an
approach is that modelling key resources of specialist
species under future climate scenarios can inform
future conservation planning even for rare species
that may be difficult to model on their own (Hannah
et al. 2002). Later, model predictions can be vali-
dated (i.e. ground-truthing model predictions) and
used to guide fieldwork for a comprehensive assess-
ment of other habitat aspects required to support the
species (e.g. Draper et al. 2019). Thus, waste can be
avoided by allocating scarce conservation resources
to areas that have potential to be occupied by the tar-
get species, avoiding focusing on irrelevant locations.
Here, we use the approach of modelling the distri-

bution of the food tree of a rare and declining spe-
cialist songbird to evaluate current and future habitat
suitability. The endangered forty-spotted pardalote,
Pardalotus quadragintus, is a small songbird endemic
to the island state of Tasmania, Australia. Due to
ongoing habitat degradation, wildfire, low nesting site
availability, competitors and parasites, pardalotes that
were once widely distributed in forests where white
gums were present across eastern Tasmania now
mainly occur on two offshore islands (Bruny and
Maria; Appendix S1; Threatened Species Sec-
tion 2006; Edworthy et al. 2019; Webb et al. 2019).
Forty-spotted pardalotes forage primarily on white
gum Eucalyptus viminalis, and local occurrence within
their island refuges is governed by the presence of
white gums. They are foliage gleaners that forage for
arthropods, lerps (crystallized honeydew produced by
psyllids) and manna (sugary exudates produced by
white gums; Woinarski & Bulman 1985). Manna is

an important food item for forty-spotted pardalotes’
nestlings (and possibly adults), constituting 84.2% of
their diet (Case & Edworthy 2016). Although many
Australian birds feed on manna, forty-spotted parda-
lotes are the only reported species able to mine
manna from white gums with their elongated bill tips
(Case & Edworthy 2016).
Conservation translocation has been proposed to

create insurance populations on the main island of
Tasmania (Webb et al. 2019)l, but there is no infor-
mation on habitat availability and quality to inform
planning of reintroduction trials. Because of their
restricted contemporary distribution and low number
of historical records, SDMs based on sparse parda-
lote occurrence records may have high uncertainty
(i.e. result in models with low predictive power), thus
using outputs to guide management decisions as mis-
leading. In contrast, there are many more records
available on the occurrence of white gum across Tas-
mania. Given the close association between parda-
lotes and their food tree, we capitalize on this
relationship to develop an SDM of this key habitat
feature that can be used to guide on ground habitat
assessments. Using boosted regression trees (Elith
et al. 2008) we model the distribution of white gum
under current and future climate scenarios to identify
areas where pardalotes’ food trees are more likely to
occur and investigate possible future shifts in its dis-
tribution to inform conservation planning. We com-
pare the previously known extent of white gum with
our SDM predictions, and then account for the sev-
ere impacts of deforestation across Tasmania in our
interpretation of habitat availability for pardalotes.
We show that available vegetation mapping underes-
timates the probability of white gum occurrence, and
that there is a large area of potential pardalote habitat
on mainland Tasmania available for future conserva-
tion efforts. We discuss our results in the context of
how our models may be used to guide the next steps
in the process of identifying potential sites for forty-
spotted pardalotes’ translocation trials.

METHODS

Species data

We collated presence and absence records of white gum
across Tasmania using data from three different sources:
(1) data collected by the authors during other field surveys
(Alves et al., 2019; Webb et al. 2014); (2) data made avail-
able by Sustainable Timber Tasmania (STT; presence and
absence data collected at 7234 vegetation plots across Tas-
mania between 1990 and 2019); and (3) data downloaded
from the Natural Values Atlas (www.naturalvaluesatlas.tas.
gov.au, accessed 28 October 2019). Data were cleaned to
ensure records were recent (i.e. since 1990), accurate (i.e.
accuracy was <100 m) and unique (i.e. one record within
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each 250 m spatial grid cell). Two morphologically similar
trees (E. dalrympleana and E. rubida) occur at altitudes
between 200 m and 600 m, making the distinction between
white gum and these species complex (Williams &
Potts 1996). However, we retained presence records of
white gums at this altitudinal range but acknowledge some
records might be inaccurate due to species mis-
identification. The final data set combined comprises
10 837 records across Tasmania, and white gums occurred
at 3761 of them (i.e. a prevalence of approximately 35%).

Environmental data for current climate

We used 24 variables to model the distribution of white
gum (Table 1). We chose climatic variables based on their
importance for the distribution of other Eucalyptus spp.

(e.g. Austin et al. 1997), and the distinct patterns of rainfall
between the east and west coast of Tasmania (Grose
et al. 2010). We also used topographic and soil variables,
which are important for the distribution of eucalypt species
and known to improve prediction power of SDMs for
plants (Austin & Van Niel 2011; Dubuis et al. 2013). Bio-
climatic predictors were derived using a 250 m digital ele-
vation model (DEM; Geoscience Australia 2008) in
ANUCLIM version 6.1 (Xu & Hutchinson, 2011). We also
used the DEM to calculate topographic predictors (i.e.
aspect and slope) using the package ‘raster’ v. 3.5–2 in R
(Hijmans 2021; R Core Team 2021). We obtained soil lay-
ers from the CSIRO database (Kidd et al. 2014; Viscarra
Rossel et al. 2015) with a cell size of three arc seconds
(90 m) and aggregated to 250 m cell to align with the other
rasters. The soil layers were available for six depth slices
(0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and

Table 1. Summary statistics for the environmental variables used to model white gum distribution using boosted regression
trees. Values represent minimum, maximum and mean for each predictor. Bioclimatic variables were extracted from ANU-
CLIM version 6.1

Variable Description Mean and range

Bioclimatic predictors
BIO01 Annual mean temperature (°C) 10.5, 3–14.1
BIO04 Temperature Seasonality (standard deviation *100) 1.1, 0.7–1.3
BIO05 Max temperature of warmest period 20.7, 12.5–24.7
BIO12 Annual precipitation (mm) 1308, 442–3400
BIO14 Precipitation of driest period (mm) 14, 5–40

Soil predictors
Bulk density (5–15 cm) Bulk Density of the whole soil (fine and coarse texture fractions;

Mg/m3) between 5 and 15 cm depth
0.85, 0.2–1.3

Bulk density (30–60 m) Bulk Density of the whole soil (fine and coarse texture fractions;
Mg/m3) between 30 and 60 cm depth

1.1, 0.6–1.3

Coarse fragments (5–15 cm) Coarse Fragments product (particles >2 mm in diameter; %) between
5 and 15 cm depth

4.1, 0–54

Coarse fragments (30–60 cm) Coarse Fragments product (particles >2 mm in diameter; %) between
30 and 60 cm depth

6.1, 0–55

Clay (5–15 cm) Clay content (%) between 5 and 15 cm depth 20, 0.01–54
Clay (30–60 cm) Clay content (%) between 30 and 60 cm depth 31, 0–64.2
Sand (5–15 cm) Sand content (%) between 5 and 15 cm depth 59, 10.3–98
Sand (30–60 cm) Sand content (%) between 30 and 60 cm depth 47, 9.2–98
Silt (5–15 cm) Silt content (%) between 5 and 15 cm depth 22, 0–69
Silt (30–60 cm) Silt content (%) 23, 0–71
Organic carbon (5–15 cm) Mass fraction of carbon by weight in the <2 mm soil material (%)

between 5 and 15 cm depth
10.4, 0.06–70

Organic carbon (30–60 cm) Mass fraction of carbon by weight in the <2 mm soil material (%)
between 30 and 60 cm depth

1.3, 0.002–14.7

pH (5–15 cm) pH units (1:5 soil/water paste) between 5 and 15 cm depth 5.3, 3.8–8
AWC (5–15 cm) Available water capacity (%) between 5 and 15 cm depth 15.5, 10.4–23.3
NTO (5–15 cm) Mass fraction of total nitrogen in the soil by weight (%) between 5

and 15 cm depth
0.3, 0.05–0.68

PTO (5–15 cm) Mass fraction of total phosphorus in the soil by weight (%) between 5
and 15 cm depth

0.04, 0.01–0.2

Soil class Soil classification in 13 classes: (2) Calcarosols, (3) Chromosols, (4)
Dermosols, (5) Ferrosols, (6) Hydrosols, (7) Kandosols, (8)
Kurosols, (9) Organosols, (10) Podosols, (11) Rudosols, (12)
Sodosols, (13) Tenosols, (14) Vertosols

NA

Topographic predictors
Aspect Derived from the digital elevation model (°) 177, 0–360
Slope Derived from the digital elevation model (°) 6.3, 0–55
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100–200 cm), but in most cases they were highly corre-
lated, so we only kept uncorrelated depths (Table 1).

Environmental data for climate scenarios

To project our model of white gum distribution to future
climate scenarios, we downloaded gridded projected change
data for temperature (minimum and maximum) and pre-
cipitation from ‘Climate change in Australia’ (www.
climatechangeinaustralia.gov.au). These gridded data sets
are derived from the output of global climate models
(GCMs) from the Coupled Model Intercomparison Project
5 (CMIP5) and represent the projected future change in
the modelled climate from a 1986–2005 baseline. We
obtained change data for 20-year periods centred at the
years 2050, 2070 and 2090 for two of four Representative
Concentration Pathway (RCP) scenarios. We chose a high
(RCP8.5) and a low (RCP4.5) emission scenario to capture
the range of emissions uncertainty (van Vuuren
et al. 2011). To select the models, we used the online cli-
mate future tool available at ‘Climate change in Australia’,
which accounts for the whole range of CMIP5 global mod-
els, representing the full range of possible projections.
Using the Climate Futures Framework (Whetton
et al. 2012), we selected models representing the ‘cooler
and wetter’, ‘hotter and drier’ and ‘maximum consensus’
scenario based on the ranking done as the result of a multi-
variate statistical goodness of fit test. ‘Cooler and wetter’
represents a climate future with the greatest increase (or
least decrease) in rainfall and the least increase in tempera-
ture and ‘hotter and drier’ a climate future with the largest
decrease (or least increase) in rainfall and the greatest
increase in temperature. We selected the models GISS-E2-
R-CC (‘maximum consensus’), IPSL-CM5B-LR (‘cooler
and wetter’ scenario) and HadGEM2-ES (‘hotter and
drier’). Climate change grids have coarse resolution (spatial
resolution: 1 9 1° for GISS-E2-R-CC; 3.7 9 1.9° for
IPSL-CM5B-LR; 1.9 9 1.2° for HadGEM2-ES). There-
fore, to derive the same bioclimatic variables used to model
current distribution, we supplied the gridded climate
change projections to the interpolation software ANU-
CLIM (Xu & Hutchinson 2013) as monthly additive
changes for temperature and monthly percentage changes
for rainfall. ANUCLIM applies biquadratic spline interpola-
tion to the supplied gridded climate change to downscale
climate change grids to the resolution of the input DEM
(250 m in our case) and generate bioclimatic variables
under different climate scenarios (Appendix S2; Xu &
Hutchinson 2013).

Statistical analysis

We modelled the presence/absence of white gum in relation
to environmental data using boosted regression trees (Elith
et al. 2008). We carried out analyses using R version 4.0.2
and the ‘dismo’ R package version 1.1–4 (Hijmans
et al. 2017; R Core Team 2021). The white gum data set
(presence/absence) was randomly divided into training data
(75%, N = 8127; 2804 presence and 5323 absence records)

that we used for model fitting, and testing data (25%,
N = 2710; 1753 presence and 957 absence records) to
assess model performance. We explored boosted regression
trees with varying values for tree complexity
(tc = 1,2,3,5,7,10), learning rate (lr = 0.1, 0.05, 0.01,
0.005, 0.001, 0.0005) and bag fraction (bg = 0.5 and 0.75),
and used cross-validation to choose the best performing
model (i.e. model with lowest deviance; tc = 10, lr = 0.01,
bg = 0.5; Elith et al. 2008). We also used the area under
the receiver operating curve to assess the model discrimina-
tory ability (Fielding & Bell 1997). Area under the receiver
operating curve values near 1 represent models with good
discriminatory ability, that is any randomly chosen presence
record will have a higher predicted probability of occur-
rence, when compared to a randomly selected absence
record.

Predictions were made using the final model by summing
predictions from all trees and multiplying them by the
learning rate (Elith et al. 2008). We assessed uncertainty of
predictions using a bootstrap resample of the training data
and refitting the best fitting model 999 times, and used the
0.025 and the 0.975 quantiles to create 95% confidence
intervals of the uncertainty (e.g. Miller et al. 2019). We
predicted for future climate scenarios with bioclimatic vari-
ables under future climate and kept soil and topographic
predictors the same. To better visualize the spatial distribu-
tion of changes in the climate space, we performed simple
raster algebra using the predictions for current and future
climate scenarios (i.e. subtracting a future climate scenario
from the current climate predicted probability). Negative
values in the map represent decreased probability, positive
values represent increased probability and zero represents
no changes in the probability of occurrence in relation to
the current climate (Fig. 5). The rasters with spatial predic-
tion were created using package ‘raster’ (Hijmans 2021)
and the spatial prediction was plotted using package ‘tmap’
(Tennekes 2018). To contextualize our model predictions,
we overlay the current and historical distribution of forty-
spotted pardalotes (Brown 1986). We also overlay the
human-modified land and the current mapped white gum
forest according to the Tasmanian vegetation mapping
(TASVEG 4.0; Department of Primary Industries, Parks,
Water and Environment, 2020).

RESULTS

Predictors’ contribution and model
performance

The 24 predictors used to model the distribution of
white gum are summarized in Table 1, and the top
12 in terms of their contribution to boosted regres-
sion tree model fit are shown in Figure 1 and
Table 2 (see Appendix S4 for contribution of all pre-
dictors). The most influential predictors were precipi-
tation of driest period (BIO14, 32.3%) and annual
rainfall (BIO12, 10.1%). Overall, the distribution of
white gum increased with decreased precipitation
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(Fig. 1). Other bioclimatic and some soil variables
also contributed to the model, but their contribution
was less than 10% (Table 2). Predictive performance
of the model was very good (Area under the receiver

operating curve on testing data: 0.95), with very high
predicted probabilities for observed presence records,
and very low predicted probabilities for observed
absence with little overlap (uncertainty) between the
two (Fig. 2).

Current and future spatial distribution

Spatial predicted probability of white gum occurrence
and associated prediction uncertainty are presented
in Figure 3. The spatial distribution predicted in our
model shows large areas of high probability of white
gum occurrence outside known areas (Fig. 4, panel
c). Predicted probability under the climate scenarios
we investigated are presented in supplementary mate-
rials (Appendix S5), and changes in probability in
relation to current climate (i.e. shifts in distribution)
are presented in Figure 5. Some loss can be observed
in the probability distribution (represented as nega-
tive values), particularly for the ‘cooler and wetter
scenario’, however, substantial ‘gain’ (represented by
positive values) was predicted for both maximum
consensus and ‘hotter and drier’ (Fig. 5).

Fig. 1. Marginal effects for the top 12 explanatory variables in the boosted regression tree for current climate (grey shaded
area represents 95% CI). The distributions of observed white gum presences (top) and absences (bottom) are indicated by
the rug plot on each panel (black marks along the x-axis). Plot with all variables included in the model is presented in supple-
mentary material (Appendix S5).

Table 2. Relative contribution (%) of the top 12 explana-
tory variables in the boosted regression tree model for dis-
tribution of white gum

Explanatory variable
Relative contribution

(%)

BIO14 (Precipitation of driest
period)

32.2

BIO12 (annual precipitation) 10.1
BIO05 (Max temperature of

warmest period)
6.5

BIO04 (Temperature Seasonality) 6.3
pH (5–15 cm) 5.7
Soil class 4.1
Available water capacity (5–15 cm) 3.2
BIO01 (annual mean temperature) 3.1
PT (Total phosphorus; 5–15 cm) 2.6
NT (Total nitrogen; 5–15 cm) 2.4
Organic carbon (30–60 cm) 2.1
Coarse fragments (5–15 cm) 2.1
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DISCUSSION

In this study, we created a predictive map for the dis-
tribution of white gum, a key food tree of the endan-
gered forty-spotted pardalote. Our model predicted
high probability of white gum occurrence across a
larger area than its currently mapped distribution.
This result is consistent with the known distribution

of white gum (Williams & Potts 1996), which occurs
in drier lowland coastal and inland areas of northern,
eastern and southern Tasmania. Although some loss
in the climate space was predicted across the future
climate scenarios, the models predicted substantial
gain for the maximum consensus and hotter/drier
scenario. Our model provides a hopeful indication
that, assuming habitat restoration can be achieved at

Fig. 2. Predictive perfor-
mance of the boosted regres-
sion tree model evaluated
using 25% of the records
retained for model testing
(N = 2710; 1753 presence and
957 absence records). The x-
axis shows the predicted proba-
bility of white gum presence,
grouped according to whether
white gum was present (shaded
blue) or absent (shaded red).
The y-axis is the smoothed fre-
quency of observations.

Fig. 3. Predicted probability of white gum occurrence and associated prediction uncertainty (95% confidence intervals).
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ecologically relevant spatial scales and time frames,
there may be opportunities for reintroduction of par-
dalotes beyond their current range. Our models also
predicted high probability of white gum occurrence
in forested areas, showing the need to validate pre-
dictions to confirm the presence of white gums and
potentially identify sites suitable for reintroduction
trials. These predictions are the first step in the com-
plex task of selecting sites for reintroductions and
can be used to guide future habitat assessments for
translocation trials for forty-spotted pardalotes.

Predicted white gum distribution

Bioclimatic variables were the most important for
predicting the presence of white gums. These results
are in line with distribution models for other Eucalyp-
tus species (e.g. Austin & Van Niel 2011; Butt
et al. 2013), including white gum on mainland Aus-
tralia (Adams-Hosking et al. 2012). The two key pre-
dictors were aspects of precipitation (precipitation of
the driest period and annual precipitation), reflecting
the distinct pattern of rainfall between the wet west

and the drier east coast of Tasmania where white
gums are more likely to occur. The spatial distribu-
tion predicted in our model shows vast areas of high
probability of occurrence in the Midlands and north-
ern coastal hinterlands where white gum was known
to have historically occurred as the dominant species
in alluvial valleys (Williams & Potts 1996). European
colonizers extensively deforested these areas (and
land clearing is ongoing in the region), and these
regions contain historical records of pardalotes.
Based on our results, these locations remain biocli-
matically suitable for white gums; however there
remain many threats to pardalotes that have not been
addressed, for example land clearing and presence of
competitors. Thus, despite their bioclimatic suitabil-
ity for white gums, extensive restoration is required
to make the midlands and northern coast regions
potential candidates for translocations of pardalotes.
Unfortunately, the spatial extent and severity of land
degradation in these regions means that large areas
may never become suitable, highlighting the impor-
tance of protecting remaining forests and woodlands
in these areas. However, beyond the midlands other
forested areas came up with high probability of white

Fig. 4. Predicted probability distribution of white gum across Tasmania: (a) blue (absence) and orange (presence) dots rep-
resent raw data used for modelling; (b) grey areas represent human-modified land, and dots represent current (orange) and
historical (blue; historical records obtained from Table 1, Brown 1986) distribution of pardalotes; (c) human-modified land
(grey) and mapped areas of white gum according to TASVEG (orange), showing that our model predicted areas of high prob-
ability outside of known white gum forest. Predicted probability of white gum occurrence for historical and current distribu-
tion of forty-spotted pardalotes (b) are presented in supplementary material (Appendix S3).
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Fig. 5. Change in probability
under the climate scenarios we
investigated. These maps were
created using raster algebra,
that is subtracting future cli-
mate predicted probability
from the current climate pre-
dicted probability. Therefore,
negative values represent
decreased probability in rela-
tion to current climate predic-
tions (‘loss’) at a cell pixel and
positive values represent
increase probability of occur-
rence (‘gain’); zero represent
no change in relation to pre-
dictions for the current cli-
mate.
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gum occurrence warranting field validation of model
predictions with the aim to locate potential reintro-
duction sites.

Distribution under future climate scenarios

Predictions for the future climate scenarios show
more gain than loss in suitability for white gum, at
least for some of the scenarios we investigated. This
is not surprising as it reflects the patterns of rainfall
across Tasmania. Given that white gums are
restricted to the drier east coast of Tasmania, the
‘cooler and wetter scenario’ predicts more rainfall
and therefore ‘loss’ in the climate space while the
‘hotter and drier scenario’ predicts less rainfall and
therefore ‘gain’ in the climate space, particularly
towards the wetter western Tasmania. Although pre-
dictions for the cooler/wetter scenarios (particularly
for RCP4.5 in 2050 and 2070) show decrease in
probability of occurrence for some areas, we
acknowledge the limitations of correlative models
and interpret these results with caution (Pacifici
et al. 2015; Butt et al. 2016). Correlative models rely
on information of a species’ realized niche (the envi-
ronments where a species is found), as opposed to
the fundamental niche (the environments where a
species can be found; Wiens et al. 2019), and there-
fore we do not have biotic information to predict
whether white gum may be able to adapt to an envi-
ronment with increased rainfall. Nonetheless, our
results are consistent with predictions for other Euca-
lyptus species in temperate Australia (Butt
et al. 2013). Many Eucalyptus species are facing cli-
mate stress with predictions showing large distribu-
tional shifts (e.g. Butt et al. 2013; Gonz�alez-Orozco
et al. 2016), particularly in species in the ‘desert and
open woodland’ climate region (Butt et al. 2013).
However, predictions for temperate Australia do not
show substantial loss in climate space, particularly for
Tasmania (Butt et al. 2013). This pattern reflects the
less pronounced climatic changes projected for Tas-
mania (evident in the small variability in the biocli-
matic variables) when compared to Australian
mainland and global average changes (Grose
et al. 2010). This is due in part to the influence of
the Southern Ocean, which stores excess heat, mod-
erating projected changes (Grose et al. 2010).
Nonetheless, we recognize that the bioclimatic vari-
ables used in our models reflect changes in climatic
means and do not account for extreme climatic
events, which are expected to increase (Meehl
et al. 2007), or change in variability. Climatic influ-
ences such as the El Ni~no-Southern Oscillation
(ENSO) and the Southern Annular Mode (SAM)
drive substantial variability in precipitation and
drought risk over Tasmania (Mariani &

Fletcher 2016; Delage & Power 2020), and pro-
longed drought can cause forest dieback (Calder &
Kirkpatrick 2008; Anderegg et al. 2013). The length
and intensity of droughts and frequency of extreme
fire weather is likely to increase (Timmermann
et al. 2018; Harris & Lucas 2019; Wang et al. 2019;
Delage & Power 2020; Kirono et al. 2020). White
gums are highly vulnerable to dieback in stressed
growing conditions (e.g. Ross & Brack 2015) and
thus are more likely to be negatively impacted by
these extreme climatic events.

Implications for forty-spotted pardalotes

Our models show areas of potential white gum
occurrence outside the mapping available for the spe-
cies. This supports observations made by the authors
during fieldwork across Tasmania where subdomi-
nant white gum occurrence in forest/woodland cano-
pies is not included in available vegetation mapping.
This is encouraging as more areas may be available
for further habitat assessment. With regard to future
translocation planning, we propose using our spatial
prediction to first design a survey to validate model
predictions, that is the ground-truth stage. Where
presence of white gums is confirmed, surveys for
extant forty-spotted pardalotes should be undertaken.
Although the current distribution of forty-spotted
pardalotes is assumed to be known, systematic sur-
veys to look for extant populations beyond known
populations have not been conducted. Forty-spotted
pardalotes were recently re-discovered in a small
patch of habitat in Southport, on the Tasmanian
mainland where the species was last recorded
>120 years ago (Webb et al. 2019). Given these
small, cryptic birds are less vocal in areas where they
occur in low density (probably to avoid aggressive
competitors, e.g. striated pardalotes; Woinarski &
Rounsevell 1983; Alves, 2016, pers. obs), and shelter
in tree cavities in inclement weather, it is reasonable
to believe they may be easily overlooked during non-
targeted surveys.

CONCLUSIONS

Funding for conservation is scarce, and modelling
techniques can be a useful way to guide where to
concentrate on ground efforts in reintroduction pro-
grammes. Previous reintroduction projects have
extensively used SDMs to model the distribution of
the species target, but the number of records avail-
able for modelling are often too small because the
species is rare, elusive or suffered substantial decline
and their current distribution do not represent their
fundamental niche. Moreover, conservation planning
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for specialist species should consider key habitat fea-
tures, particularly under a changing climate because
specialists are more limited by their habitat require-
ments and less able to shift their distribution (e.g.
Adams-Hosking et al. 2012). Here, we took advan-
tage of the specialized diet of pardalotes and mod-
elled the distribution of its key food source. This
approach may be used for other highly specialized
species, not only in context of reintroduction plan-
ning but also in the general management of data-
poor specialist species that depend on a more com-
mon food source.
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SUPPORTING INFORMATION

Additional supporting information may/can be found
online in the supporting information tab for this arti-
cle.

Appendix S1. Current and known historical dis-
tribution of forty-spotted pardalote across Tasmania,
showing mapped white gum dominated forest (parda-
lote’s preferred food tree) within remaining forest
cover according to TASVEG 4.0 (Department of Pri-
mary Industries, Parks, Water and Environment,
2020)

Appendix S2. Summary statistics for the environ-
mental variables used to predict white gum distribu-
tion for different climate scenarios.

Appendix S3. Predicted probability of white gum
occurrence for historical and current distribution of
forty-spotted pardalotes.

Appendix S4. Marginal effects for each explana-
tory variable in the boosted regression tree (grey
shaded area represents 95% CI).

Appendix S5. Spatial predicted probability of
white gum distribution for current and future climate
scenarios.
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