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ABSTRACT

The breeding of threatened species in captivity for release is a central tool in conservation biology. Given gloomy
predictions for biodiversity trends in the Anthropocene, captive breeding will play an increasingly important role in pre-
venting future extinctions. Relative to the wild, captive environments drastically alter selection pressures on animals.
Phenotypic change in captive animals in response to these altered selection pressures can incur fitness costs post-release,
jeopardising their potential contribution to population recovery. We explore the ways in which captive environments can
hinder the expression of wild phenotypes. We also stress that the phenotypes of captive-bred animals differ from their
wild counterparts in multiple ways that remain poorly understood. We propose five new research questions relating to
the impact of captive phenotypes on reintroduction biology. With better use of monitoring and experimental reintroduc-
tions, a more robust evidence base should help inform adaptive management and minimise the phenotypic costs of
captivity, improving the success of animal reintroductions.
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I. INTRODUCTION

The world is in the midst of a biodiversity crisis and extinc-
tion rates will increase over the coming century (Ceballos,
Ehrlich & Dirzo, 2017; Powers & Jetz, 2019). Never before
has there been a greater need to develop effective ways to
conserve biodiversity (Paul et al., 2020). Captive breeding
and release, or reintroductions, are a common approach to
facilitate threatened species recovery (Conde et al., 2011).
Captivity shelters a subset of individuals from the threatening
processes that contribute to population decline in the wild
(Caughley, 1994). Individuals bred in captivity can insure
against extinction (Dobson & Lyles, 2000) and be used to sup-
plement or re-establish wild populations (Ewen et al., 2012).
Captive breeding for release is a recommended conservation
strategy for over 2000 threatened species globally (IUCN
Conservation planning specialist group, 2020).

Despite clear potential, reintroductions do not always
result in self-sustaining wild populations and are resource
intensive (Fischer & Lindenmayer, 2000). Managing the
California condor Gymnogyps californianus, for example, costs
more than a million US$ per year (U.S. Fish and Wildlife
Service, 2012). Investment of this magnitude requires confi-
dence that reintroductions will result in population recovery.
If not, conservation funds may arguably be better spent else-
where (Gerber, 2016), particularly if species are likely to rely
on long-term intensive management (Heinsohn et al., 2022).
Reintroduction of captive-bred animals can also result in
unforeseen loss of fitness in wild populations (Araki,
Cooper & Blouin, 2009), through the introduction of delete-
rious alleles and exposure to pathogens (Araki, Cooper &
Blouin, 2007; Peters et al., 2014). Doubts about whether rein-
troductions are based on effective applied science (Taylor
et al., 2017) call for a better understanding of how and when
ex-situ management can be a viable conservation measure
(McGowan, Traylor-Holzer & Leus, 2017). A key compo-
nent of answering this question is understanding whether
captive animals differ from their wild counterparts.

Captive environments impose substantially different selec-
tion pressures on animals relative to the wild environments in
which they evolved. Some negative genetic fitness effects of
captive breeding are unavoidable because only a subset of
wild gene diversity can typically be represented in captive
pedigrees (Frankham, 2008). Given that genetic adaptation
to captivity can occur in only a few generations (Christie
et al., 2012), avoiding deleterious changes is challenging
(Ford, 2002; Frankham et al., 2017). Altered traits of captive
animals can also arise through phenotypic plasticity; the
potential for organisms to produce different phenotypes in
different environments (Edelaar & Bolnick, 2019). However,
the capacity of individuals to alter their phenotype according

to their environment is limited and takes time (DeWitt, Sih &
Wilson, 1998), meaning it is not easy to distinguish genetic
change from phenotypic plasticity. Recent evidence shows
that captive animals differ from wild conspecifics in ways that
are not entirely attributable to genetics (Davis, Smith &
Ballew, 2020; Tenger-Trolander et al., 2019). Maintaining
viable wild populations by reintroducing captive-bred indi-
viduals is much more than a numbers game (Fischer &
Lindenmayer, 2000) and it is becoming increasingly appar-
ent that the phenotypic quality of captive-bred animals is as
important as their quantity in determining reintroduction
success (Berger-Tal, Blumstein & Swaisgood, 2020;
Shier, 2016). Understanding the myriad ways that animal
phenotypes can change in captivity is critical for managing
risk, ensuring the efficacy of captive breeding, and is also an
important animal welfare consideration (Webster, 1995).
This in turn can have implications for the way captive breed-
ing for reintroduction is designed and managed to ensure
animals are treated ethically in captivity and post-release.
In wild populations, natural selection acts on the variance

between individuals in reproductive success and mortality
(Darwin, 1859). In captivity, variance in reproductive success
and mortality is reduced through food provisioning, veteri-
nary practices aimed at maximising lifespan and reproduc-
tive output, and the absence of predation (Driscoll,
Macdonald & Brien, 2009). However, the importance of
selection in captivity is under-appreciated (Schulte-
Hostedde & Mastromonaco, 2015). Non-random variance
of traits in captive animals may also signal that new anthro-
pogenic selective pressures have emerged. Examples of ‘cap-
tive selection’ include behavioural traits, for example where
less-neophobic individuals have higher reproductive success
or lower mortality and stress levels (Price, 1999). Because
captive population sizes are typically small, altered selection
pressures and genetic drift can drive phenotypic divergence
of captive animals from their wild ancestors
(Frankham, 2008; Kitada et al., 2009).
A typical approach to mitigating phenotypic change in

captive animals involves management of studbooks to maxi-
mise retention of genetic diversity (Frankham, 2008).
However, genetic management alone is unlikely to detect
or mitigate phenotypic change unless traits are monitored
proactively; this is rarely achieved in captivity for a number
of reasons. First, trait changes may be cryptic (Stojanovic
et al., 2021a) or hidden by the protective environment,
e.g. lack of selection against maladaptive traits (Kohler,
Preston & Lackey, 2006). Second, invasive handling of ani-
mals required to detect subtle morphological changes is often
avoided because it can cause stress (Gouveia & Hurst, 2019).
Third, there are often knowledge gaps about how captive
phenotypes compare to those in the wild. Lastly, because
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most species lack detailed genetic studies, mapping of geno-
types and corresponding phenotypic traits is usually poor or
non-existent (Brandies et al., 2019; Pierson et al., 2016).
A detailed understanding of the role of selection in driving
differentiation of captive animals from wild conspecifics
may only be achieved when research methods are developed
that allow collection of this cryptic information.

We aim here to review the ways that animal phenotypes
can change in captivity, and to develop a conceptual frame-
work to highlight the role of the captive phenotype in
influencing the success of captive breeding for reintroduction
(Edelaar & Bolnick, 2019). We first explore how captive envi-
ronments can alter animal phenotypes and the relationships
between phenotypic traits. We then discuss how adaptive
management – a process to enhance knowledge and improve
conservation decisions through monitoring (Canessa
et al., 2016) – can reduce the phenotypic costs of captivity
and increase reintroduction success (see Section IV). Finally,
we identify five key research questions, the answers to which
could improve the success of future reintroduction efforts.

II. THE CAPTIVE PHENOTYPE

Wedefine the captive phenotype as the behaviour, morphology
and health of captive individuals that may differ from those of
wild conspecifics due to altered (or lack of) selection pressures
in captivity and/or phenotypic plasticity. Below we outline the
ways in which captive phenotypes can emerge. In most cases,
there has been little evaluation of the ways in which captive phe-
notypes impact reintroduction outcomes, however the few cases
where this information is known are discussed below.

(1) Behavioural

Captive environments are often unavoidably simplified relative
to the wild, meaning that behaviours associated with life skills
may also be simplified. An inability to learn or express the
behaviours needed to survive in the wild may result in develop-
ment of behaviours that are disadvantageous after release. Ani-
mals may fail to develop particular behaviours in captivity for a
number of reasons. These include restriction of the ability to
express behaviours related to survival and reproduction (Lewis
et al., 2022), a mismatch between the timing of developmental
periods and opportunities to gain relevant experience (Crates
et al., 2021), or lack of stimulation (Burn, 2017). Many behav-
iours are also learned from associates, facilitating the mainte-
nance of behavioural norms through conformity (Brakes
et al., 2019). Behaviours acquired in captivity can emerge
because captive-bred animals are typically unable to associate
with and learn fromwild conspecifics. The erosion of and diver-
gence from wild behaviours can occur quickly in captivity
(Courtney Jones, Munn & Byrne, 2017) and the need to main-
tain learned animal behaviours (i.e. cultures) in conservation is
increasingly being recognised (Brakes et al., 2019).

(a) Vocalisation

Similar to humans, many animals including cetaceans, primates
and birds learn vocalisations from conspecific tutors (Nowicki &
Searcy, 2014). Vocalisations are under selection given their role
in mate and territory acquisition, conspecific recognition, dis-
persal and antipredator behaviour (Lindström, 1999). Vocal dif-
ferences between captive-bred and wild conspecifics could
compromise the success of reintroductions if such differences
lead to assortative mating, higher predation rates or other neg-
ative impacts on social associations (Freeberg, 1996). Captive
Hawaiian crows Corvus hawaiiensis have lost territorial broadcast
calls from their repertoire (Tanimoto et al., 2017), but appear to
have retained functional responses to such vocalisations (Sabol
et al., 2022). The songs of captive and wild conspecifics differ
drastically in regent honeyeaters Anthochaera phrygia (Crates
et al., 2021) and Puerto Rican parrots Amazona vittata

(Martínez & Logue, 2020). Experimental changes to social
group composition caused dialect change in captive common
marmosets Callithrix jacchus (Zürcher, Willems &
Burkart, 2019). Shifts in vocal cultures following fragmentation
of social groups have also been shown in orcasOrcinas orca (Foote
et al., 2006) and humans (Walsh, 2005).

(b) Animal movement

Whilst animal movements often have a genetic basis
(Liedvogel, Akesson & Bensch, 2011), there is a substantial
learned component to movements of many species. Migra-
tion routes can be learned by accompanying older conspe-
cifics (Mueller et al., 2013) or refined through individual
experience (Campioni et al., 2020). Changes to the move-
ment patterns of captive-bred animals are generally a barrier
to successful reintroduction of mobile species, although there
have been suggestions that interrupting cultural transmission
of dispersal pathways may actually benefit reintroductions in
heavily modified environments (Dinets, 2015). Captive-
reared Asian houbara Chlamydotis macqueenii departed their
breeding grounds 20 days later and travelled on average
480 km less than wild conspecifics (Burnside, Collar &
Dolman, 2017). Surviving captive-born houbara were also
faithful to wintering locations across years, suggesting mini-
mal phenotypic plasticity in their dispersal behaviour.
Hatchery-reared Atlantic salmon Salmo salar had similar
migratory performance to wild conspecifics in terms of
migration speed, but were 13.9 times less likely to survive
than naturally reared smolt (Larocque, Johnson &
Fisk, 2020). Appenine chamois Rupicapra pyrenaica reared in
an enclosure moved less frequently and shorter distances
than wild founders after release (Bocci et al., 2014), whilst
captive-bred monarch butterflies Danaus plexippus (Fig. 1A)
rapidly lost their migratory tendency and failed to orient
south (Tenger-Trolander et al., 2019).

(c) Sociality

Most captive-breeding programs house individuals together
based on necessary priorities including logistics and
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resourcing capacity. Consequently, captivity may create an
artificial social environment because individuals have little
autonomy over whom they associate with (Koene &
Ipema, 2014; Rose & Croft, 2015). Social relationships, roles
and cohesion acquired in captivity are important

considerations in reintroductions (Goldenberg et al., 2019).
Quantifying how social aspects of the captive phenotype
affect reintroduction success is complex (Rose &
Croft, 2015) because by definition the social components of
an individual’s phenotype are dependent upon the nature
of its social network. Factors like pre-existing relationships,
genetic relatedness and the potential impact of both negative
and positive social relationships can affect the behaviour and
fitness of both captive and wild animals (Letty, March-
andeau & Aubineau, 2007).
Reintroduced hihi Notiomystis cincta that gained more asso-

ciates post-release tended to show higher survival, suggesting
that social individuals are more likely to found reintroduced
populations (Franks et al., 2020). Post-release dispersal dis-
tance of captive river otters Lontra canadensis was predicted
by prior history of positive social interactions in captivity
(Hansen et al., 2009). In reintroduced western lowland
gorillas Gorilla g. gorilla, group cohesion declined markedly
after the death of a single, highly social wild-born individual
(Le Flohic et al., 2015). Demographic composition of
captive groups can also determine post-release group
cohesion. Social group maintenance in released Asian ele-
phants Elephas maximus hinged on the presence of juveniles
(Thitaram et al., 2015). After release, house miceMus musculus

engaged in assortative mating where captive-reared
and wild-provenance individuals did not interbreed
(Slade et al., 2014). Increasingly sophisticated ways to track
animals and analyse their social structure (Papageorgiou &
Farine, 2021) offer exciting opportunities to assess better
how the social functionality of captive-bred animals differs
from that of wild conspecifics, and the role that social factors
could play in determining the success of reintroduction
efforts.

(d) Cognition

Cognitive ability is a central component of survival in the
wild because it impacts spatial awareness, foraging ability
and antipredator behaviour (Shettleworth, 2001). Captive
environments are often less complex than wild environments,
jeopardising cognitive development (Reading, Miller &
Shepherdson, 2013). For example, captive Mexican jays
Aphelocoma wollweberi exhibit reduced problem-solving perfor-
mance relative to wild conspecifics (McCune et al., 2019).
Captive Atlantic salmon that were denied 8 weeks of envi-
ronmental enrichment showed less neural plasticity and infe-
rior spatial learning ability than enriched conspecifics
(Salvanes et al., 2013). Black-footed ferrets Mustela nigripes

exhibit both learned and innate components of their preda-
tory behaviour, and captive animals that practise hunting
in large enclosures built on top of colonies of their preferred
prey are most successful after release (Dobson & Lyles, 2000).
An important element of cognition critical to reintroduction
success is the ability to recognise and respond appropriately
to predators. Northern quolls Dasyurus hallucatus translocated
to predator-free islands lost aversion to predators after only
13 generations (Fig. 1B; Jolly, Webb & Phillips, 2018), and

Fig. 1. (A) Monarch butterflies Danaus plexippus are migratory,
but captive-bred individuals lose key behavioural traits
associated with migration, including the ability to orient south.
They also suffer developmental and physiological impacts
including different wing shape and weaker grip. Image: Yi-Kai
Tea. (B) Northern quolls Dasyurus hallucatus translocated to
predator-free islands lose predator aversion within
13 generations. Image: Henry Cook. (C) The wing shape of
orange-bellied parrots Neophema chrysogaster bred in captivity
(dotted lines) differs significantly from that of wild conspecifics
(solid line). Captive-bred parrots have a more convex trailing
edge of the wing, which is less suited to long-distance
migratory flights. Illustration: Peter Marsack, image: Dejan
Stojanovic.
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such effects have been shown in multiple captive-bred species
(McCleery et al., 2013; McPhee, 2004; Watkins et al., 2018).
Inadequate anti-predator behaviour was identified as the
main cause of failure for parrot reintroductions globally
(White et al., 2012).

(2) Morphological

The morphology of animals is the outcome of developmental
plasticity (Shettleworth, 2001), natural selection and artificial
selection (Brandenburger et al., 2019). There is abundant evi-
dence of morphological change in captivity relative to wild
conspecifics with respect to body and organ size, shape and
skeletomuscular structure.

(a) Body and limb form

Captive animals may increase (Connolly & Cree, 2008;
Turner et al., 2016) or decrease in size (Faleiro &
Narciso, 2013; Hard et al., 2000) relative to wild conspecifics.
Captive Atlantic salmon (Blanchet et al., 2008) and rainbow
trout Oncorhynchus mykiss (Pulcini et al., 2013) develop deeper
body profiles than wild fish, and changes to fin length can
reduce swimming performance. Shortening of total limb
length of the legs and wings of captive birds has been
observed in zebra finches Taeniopygia guttata (Carr &
Zann, 1986) and European goldfinches Carduelis carduelis

(Domínguez, Vidal & Tapia, 2010). Flight feathers of
captive-bred orange-bellied parrots Neophema chrysogaster dif-
fer subtly in length to those of wild, migratory conspecifics,
resulting in wings with a more rounded tip and convex trail-
ing edge (Fig. 1C; Stojanovic et al., 2021a). These small
changes may make wings less suited for migratory flights
but are easy to overlook as there is no overall difference in
body size between captive and wild individuals (Stojanovic
et al., 2019). Similar changes to wing shape of captive butter-
flies make them less suited to long-distance migration, reduc-
ing post-release survival (Davis et al., 2020).

(b) Skeletomuscular structure and organs

Altered cranial morphology in captivity is common across
taxa, with reports from captive reptiles (Connolly &
Cree, 2008; Drumheller, Wilberg & Sadleir, 2016), birds
(Carr & Zann, 1986) and mammals (Geiser &
Ferguson, 2001; Hartstone-Rose et al., 2014). These differ-
ences can include changes to the mandibles
(Zuccarelli, 2004) and teeth (Crossley & del Mar
Miguélez, 2001; Taylor et al., 2014). Wild Mexican wolves
Canis lupus baileyi have larger and differently shaped skulls to
captive conspecifics, with reintroduced individuals exhibiting
intermediate features (Siciliano-Martina et al., 2021). Some
of these changes arise due to consumption of soft and pro-
cessed diets in captivity. Captive lions Panthera leo fed
soft foods exhibit smaller mandibular and maxillary regions
of the skull and weaker bite force than wild conspecifics
(Zuccarelli, 2004). Diets in captivity also change

gastrointestinal organ morphology, including the rumen
(Mason et al., 2019), length of the intestines and other diges-
tive organs (Moore & Battley, 2006), kidney and spleen mass
(Courtney Jones, Munn & Byrne, 2018). There is also evi-
dence that the brains of fish (Kihslinger, Lema &
Nevitt, 2006; Marchetti & Nevitt, 2003; Mayer et al., 2011),
birds (Guay & Iwaniuk, 2008; Smulders et al., 2000) and
mammals (Kruska, 1996) decrease in size in captivity relative
to wild conspecifics, but how these changes affect cognition
and behaviour is unclear. The mechanisms underlying these
changes warrant further study – although gastrointestinal
and oral changes are often linked to the types of diets fed to
captive animals, why other organ systems change remains
poorly understood. Furthermore, the extent to which these
changes are detrimental after release may vary among spe-
cies and phenotypic traits, and evidence of the impacts of
these changes on post-release fitness is lacking.

(3) Health

We define animal health as ‘a state of complete physical,
mental and social well-being and not merely the absence of
disease or infirmity’ (WHO, 2006, p. 1). Captivity has been
likened to both a prison and a haven, depending on the beha-
vioural and ecological traits of individual species and the
associated captivity environment (Clubb & Mason, 2003).
These differences can affect the health of animals as well as
underlying aspects of their physiology.

(a) Stress

Several studies report elevated stress in captive birds
(Dickens, Earle & Romero, 2009; Love, Lovern &
DuRant, 2017) and mammals (Franz-Odendaal, 2004;
Marino et al., 2020; Rangel-Negrín et al., 2009; Terio,
Marker & Munson, 2004). Orcas become stressed from con-
finement and sensory deprivation in captivity, which results
in chronic morbidity, shorter lifespan and high reproduc-
tive failure (Marino et al., 2020). Social stressors can nega-
tively affect Indo-Pacific bottlenose dolphin Tursiops

aduncus health (Waples & Gales, 2002) and African grey
parrot Psittacus erithacus erithacus telomere length, which
may reduce their lifespan (Aydinonat et al., 2014). These
stressors can manifest in a wide range of abnormal behav-
iours of captive animals (Mellor, Brilot & Collins, 2018).
Surprisingly, there are few examples of how stress in cap-
tivity or during release affects reintroduction outcomes
(but see Teixeira et al., 2007).

(b) Disease and parasites

Disease is a major stressor in captive environments, where
pathogens can be highly prevalent. The types of diseases/
parasites present in captivity often differ from wild popula-
tions. Captivity is associated with higher disease prevalence
in reptiles (Jacobson, 1993; Scheelings, Lightfoot &
Holz, 2011), birds (Jones & Shellam, 1999; Raidal &

Biological Reviews (2022) 000–000 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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Peters, 2017), and mammals (Kołodziej-Soboci�nska
et al., 2018; Munson et al., 2005). Although too much disease
is harmful, there are also negative impacts of its absence. Dis-
eases may become overly rare in captive populations that are
too small to maintain density-dependent endemic infections.
This ‘fade-out’ of endemic diseases can diminish herd immu-
nity (Raidal & Peters, 2017). For example, disease fade-out
heightened susceptibility to novel strains of psittacine beak
and feather disease in immune-deficient captive orange-
bellied parrots (Das et al., 2020; Raidal & Peters, 2017). Sim-
ilar problems can occur if parasites are eliminated in captivity
via use of anti-parasitic drugs, compromising host immuno-
competence and increasing susceptibility to infection post-
release (Northover et al., 2018). Reintroduced, parasite-free
wolves Canis lupus experienced parasite spill-over from sym-
patric reservoir hosts, which limited population growth
(Almberg et al., 2012).

(c) Gastrointestinal system

The quality of food in captivity has important implications
for gastrointestinal and overall health. Oral health of captive
animals appears to be especially vulnerable to changes in
diet. Predominantly soft diets fed to captive carnivores can
result in tartar build up on teeth and periodontal disease
due to the altered mechanical properties of food arising from
the lack of bone and connective tissue (Kapoor et al., 2016).
Highly abrasive diets result in premature tooth wear of cap-
tive black rhinoceros Diceros bicornis (Taylor et al., 2014),
whereas soft diets result in less wear of captive Tasmanian
devil Sarcophilus harrisii teeth (Pollock et al., 2021) and tooth
elongation and dental disease in captive chinchillas Chinchilla
lanigera (Crossley & del Mar Miguélez, 2001).

Gut microbiomes have important impacts on the health
and behaviour of animals (Mueller & Sachs, 2015). Gut
microbiomes of captive reptiles (Kohl, Skopec &
Dearing, 2014), birds (Xenoulis et al., 2010), mammalian her-
bivores (Frankel et al., 2019; Tang et al., 2020) and carnivores
(Cheng et al., 2015; Nelson et al., 2013) can differ significantly
from wild conspecifics. This trait may be plastic in response
to dietary shifts (Cheng et al., 2015), but animals with more
natural diets before release are better prepared for life in
the wild (Yang et al., 2020). Captive-bred animals that are
unfamiliar with novel wild food items ca shift from atypical
to typical foods over time (Põdra et al., 2013) and the tempo-
ral composition of their microbiomes relative to wild-born
conspecifics changes in a similar way (Chong et al., 2019).

(d) Physical ability

Captive animals may have less physically demanding life-
styles than wild conspecifics. Compared to wild individuals,
captive-bred monarch butterflies were 56% weaker in grip
strength, which is an important trait for surviving migration
(Fig. 1A; Davis et al., 2020). Captive eastern hellbenders
Cryptobranchus a. alleganiensis reared in still water were weaker
swimmers than those reared with flow (Kenison &

Williams, 2018) and captive mouse lemurs Microcebus murinus

experienced earlier decline in grip strength than wild conspe-
cifics (Hämäläinen et al., 2014). Captive-bred golden lion
tamarins Leontopithecus rosalia had worse locomotor and forag-
ing skills than their wild-born offspring (Stoinski &
Beck, 2004).

III. LINKS BETWEEN PHENOTYPIC TRAITS

A small but growing number of studies are demonstrating
associations between behavioural, morphological and
health-related aspects of the captive phenotype. For exam-
ple, increased levels of stress hormones resulted in reduced
organ mass and reduced immune responses in captive house
sparrows Passer domesticus (Love et al., 2017). Captivity dis-
rupted the endocrine and immune responses of sparrows
and also intraspecific interactions. Body size also differed
between wild and captive-bred house mice, and this morpho-
logical difference may have contributed to pronounced
assortative mating post-release (Slade et al., 2014). Multiple
behavioural, morphological and physiological traits in two
weaver species were found to be exposed to selective pressure
before release to the wild (Baños-Villalba et al., 2021). In wild
river otters subjected to temporary captivity, the position of
individual males within social networks was related to testos-
terone levels, and higher testosterone was correlated with a
reduction of positive social interactions and withdrawal from
the social network (Hansen et al., 2009). Such studies hint at
complex interactions between different elements of animal
phenotypes, which could substantially affect reintroduction
success (Table 1).

IV. ADAPTIVE MANAGEMENT OF THE
PHENOTYPIC COSTS OF CAPTIVITY

Adaptive management is widely considered to be best prac-
tice for managing biological systems where uncertainty is
inherent (Westgate, Likens & Lindenmayer, 2013). Adaptive
management is ‘learning by doing’ (Walters &
Holling, 1990), balancing the need for immediate action with
a plan for learning and refinement (Van Wilgen &
Biggs, 2011; Westgate et al., 2013). There are surprisingly
few examples where adaptive management addresses practi-
cal conservation problems (Westgate et al., 2013), because
adaptive management relies on robust monitoring programs
that are expensive to deliver (Nichols & Williams, 2006;
Likens & Lindenmayer, 2018).
Practitioners could use adaptive management to detect

deleterious phenotypic changes in captive animals by devel-
oping monitoring protocols for each component of a recov-
ery project, including connections between components.
Monitoring requires significant resourcing to develop and
implement approaches that yield sufficient data (Stojanovic
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et al., 2021b), and may be challenging to sustain long term
(Lindenmayer et al., 2012). Experimental approaches to
recovery efforts should ideally be applied to maximise confi-
dence in analysis of outcomes (Seddon, Armstrong &
Maloney, 2007).

Individual project actions such as releases to the wild
should be implemented in ways designed to answer clear
questions, within explicitly defined limitations. Figure 2 out-
lines the general form of this process. For example, practi-
tioners might identify a component of a captive phenotype
that appears harmful to fitness in the wild – this could initially
be detected by observing that captive-bred animals are
under-performing after release. Once identified, practi-
tioners might investigate earlier steps in the action sequence
to identify when differences emerge, and which aspects of
captivity drive the changes. Experiments altering aspects of
animal husbandry or release strategies could evaluate
whether phenotypic divergence can be corrected, and itera-
tive experimental releases could aim to identify possible cor-
rective actions (red pathway, Fig. 2).

V. REDUCING THE PHENOTYPIC COSTS
OF CAPTIVITY

With suitable evidence, reintroduction success can be
improved through adaptive management of husbandry and
release protocols to close the gap between captive and wild
phenotypes (Fig. 2) (Sutherland et al., 2020). To achieve this,
it is necessary to identify deleterious captive phenotypes and
their causes, evaluate their effect on post-release fitness and

identify management approaches that return traits to the
wild phenotype (Table 1).

(1) Environment

Whereas some species are intolerant of confinement and
show adverse effects of captivity, others can thrive. Species
with very large home ranges do worse than those that natu-
rally live in smaller areas (Clubb &Mason, 2003). Increasing
the size of Arctic fox Vulpes lagopus enclosures increased cap-
tive breeding success, probably by reducing stress levels in
wild-caught founders (Landa et al., 2017). Reduced densities
of smolts during rearing increases post-release migration suc-
cess of Atlantic salmon (Larsen et al., 2016). For birds, extra
flight space in larger aviaries can reduce behaviours associ-
ated with frustration and stress (Phillips et al., 2018). Maxi-
mising the size and complexity of enclosures may be an
important aspect of reducing the negative effects of captivity
and may pre-empt other management needs. For example,
fitness training before release of birds to the wild may be hin-
dered if the area available for flight exercise is too small
(Holz, Naisbitt &Mansell, 2006). Animals that naturally have
large home ranges, or undertake long-distance movements,
should be monitored for signs that confinement may be
affecting one or more phenotypic traits.

Environmental enrichment has long been recognised as
fundamental for welfare of captive animals (Newberry,
1995). However, providing opportunities for the expression
of natural behaviours such as foraging on natural foods and
predator aversion can also increase the likelihood of reintro-
duction success (White et al., 2012). Wherever possible, the
natural habitats of captive animals should be the basis for
enriching captive environments. More complex captive

Fig. 2. Conceptual pathway for reducing the impact of captive phenotypes on the success of animal reintroductions. Captive
husbandry can affect phenotypes of animals intended for release to the wild negatively (blue pathway, away from wild phenotype)
or positively (red pathway, towards wild phenotype). Captive phenotype, release strategy and external factors can all affect post-
release fitness, which in turn affects the wild population growth rate. Evidence from earlier steps should inform adaptive
management of husbandry and release strategy to avoid captive phenotypes, promoting positive population growth rates.
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environments that allow animals to develop life skills for sur-
vival after release yield better results. Raising eastern hell-
benders in running water improves swim performance
relative to those raised in still water (Kenison & Williams,
2018). Likewise, gobies raised in more complex environ-
ments developed better spatial learning abilities (Carbia &
Brown, 2019). Environmental complexity may be especially
important for species with high cognitive abilities because
simplified captive environments may impair the develop-
ment of problem solving (McCune et al., 2019). Ensuring that
enclosure design and environmental enrichment activities
reflect natural behaviours and habitats can better prepare
individuals for release, and can reduce the required duration
of post-release support (Reading et al., 2013).

As well as the physical environment, behavioural traits
must be factored into husbandry practices. Wild animal
behaviours such as vocalisations, foraging strategies and
migratory routes can drift or disappear when ‘tutors’ are
not available for social observation in captivity (Zürcher
et al., 2019). Given that species acquire socially mediated
behaviours in different contexts, bespoke solutions should
be developed. For example, birds that learn songs from con-
specifics during sensitive ‘learning phases’ of development
might be housed near a tutor or speakers broadcasting
wild-type songs (Mennill et al., 2018). Not all behaviours
can be facilitated in captivity, but there is evidence that some
may be regained after release if captive animals encounter
suitable wild tutors and environmental stimuli (Jesmer
et al., 2018).Whether or not naïve animals relearn behaviours
may vary widely among species, and sometimes new behav-
iours can arise in animals descended from captivity
(Mueller et al., 2013; Teitelbaum, Converse &
Mueller, 2019). However, learning/establishing behaviours
after release depends on whether individuals survive long
enough post-release to have learning opportunities. Ongoing
intervention and management after release may allow naïve
animals to integrate socially with wild conspecifics and/or
learn appropriate wild behaviours, instead of quickly suc-
cumbing to mortality.

(2) Training

Training techniques for animals have developed rapidly in
recent decades, and these approaches are important in sev-
eral conservation programs (Indigo et al., 2018; Loepelt,
Shaw & Burns, 2016; Rowell, Magrath & Magrath, 2020;
Teitelbaum et al., 2019). Training can improve survival rates
of captive animals released to the wild, and may help naïve
released animals survive long enough to learn survival skills
(Fajardo, Babiloni & Miranda, 2000). For example, training
animals to return repeatedly to feeders or nesting resources
may improve reintroduction success (Panfylova et al., 2016).
However, it is important to evaluate whether training is
achieving its intended purpose (Armstrong & Perrott, 2000)
and if intensive interventions can eventually be simplified
or discontinued for long-running projects (Ferrière
et al., 2021). More complex training can be provided for some

specialised aspects of life history. Light aircraft were used to
train naïve whooping cranes Grus americana about migration
routes and safe wintering grounds (Mueller et al., 2013). Pred-
ator aversion can be the difference between survival and
rapid mortality after release, so anti-predator training is often
essential (Shier & Owings, 2007). Failure to pre-empt preda-
tion is the main cause of failure in reintroductions of
parrots, because released animals either did not recognise
or responded inappropriately to predators (White
Jr et al., 2012). Anti-predator training has been applied suc-
cessfully to a wide range of taxa (Griffin, Blumstein &
Evans, 2000), but better survival is not necessarily guaran-
teed. Greater bilbies Mactrotis lagotis that received anti-
predator training survived at the same rate as a control group
when released to the wild (Moseby, Cameron &Crisp, 2012),
and collared peccaries Pecari tajacu forgot unreinforced train-
ing within 30 days (de Faria et al., 2020). Early-life predator
exposure has also been demonstrated to improve cognitive
plasticity once adulthood is reached (Vila Pouca
et al., 2021), and this unexpected benefit may be advanta-
geous for captive-breeding programs seeking to maximise
post-release fitness.

(3) Veterinary support

Advances in veterinary practice make it feasible to overcome
or manage health problems in captive and wild populations.
However, overly precautionary veterinary treatment may
diminish immunocompetence of captive animals and disad-
vantage them post-release (Smith, Acevedo-Whitehouse &
Pedersen, 2009). Loss of circulating endemic pathogens in
captive populations may make them vulnerable to disease
spill-over. Conserving parasites in captive populations boosts
the immunity of Tasmanian devils (Wait et al., 2017), and
worming pre-release European bison Bison bonasus resulted in
worse parasitism by blood-feeding nematodes than their wild
conspecifics (Kołodziej-Soboci�nska et al., 2018). Emerging evi-
dence supports a need for controlled exposure to pathogens in
captive environments to build immune competence before
release (Faria, van Oosterhout & Cable, 2010). Furthermore,
loss of endemic pathogens may facilitate infection with
less-coevolved pathogen strains, potentially causing significant
disease (Das et al., 2020; Peters et al., 2014). It is important to
recognise that endemic pathogens and parasites also have their
own intrinsic conservation value (Gompper &Williams, 1998).

(4) Release protocols

Developing suitable release protocols may involve anything
from preparation of animals in a captive environment
through enrichment and training, to the provision of ongoing
support post-release. The range of tools and techniques
applicable may vary dramatically between species and eco-
systems, and it is likely that iterative and adaptive releases
may be necessary to identify the set of procedures that are
most effective (Fig. 2). There exists a range of modelling
approaches that might be useful for balancing competing

Biological Reviews (2022) 000–000 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

10 Ross Crates and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12913 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [22/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



demands of different release strategies with overall recovery
goals for wildlife populations (Heinsohn et al., 2022; Oppel
et al., 2021) and where possible these techniques should be
applied to identify the optimal approach to reintroductions.

There has been extensive investigation into the benefits of
soft releases (where animals are allowed to acclimatise in situ
before release and are supported after release) versus hard
releases (where no post-release support is provided)
(Resende et al., 2021). Soft releases tend to result in less dis-
persal and better reintroduction outcomes (Knox
et al., 2017; Wanless et al., 2002). For example, skin micro-
biomes could be restored in a soft release of variable harle-
quin frogs Atelopus varius, which may increase disease
resistance (Kueneman et al., 2022). Despite some exceptions
(Clarke, Boulton & Clarke, 2002; Richardson et al., 2013),
on balance, soft releases incorporating anti-predator training
and environmental enrichment are best practice for releasing
captive-bred animals into the wild, because they tend to
reduce movement, increase social cohesion and offer more
opportunities for post-release care such as supplementary
feeding (Resende et al., 2021; Tetzlaff, Sperry &
DeGregorio, 2019). This is important because release loca-
tions are usually selected because they are safe, contain
important resources and are the environments most likely
to support released animals in the longer term.

Another important factor when planning releases is to select
suitable individuals. Some age cohorts can be preferred for
release – either reintroduced adults (Sarrazin &
Legendre, 2000) or juveniles (Troy & Lawrence, 2021) may
perform better among different species. Analytical approaches
are available to contrast the potential outcomes of releasing
different age classes (Robert et al., 2004) and such approaches
should be implemented alongside experimental releases that
can inform underlying model assumptions. Other reasons that
individuals may be unsuitable for release include biosecurity
risks, inappropriate behaviours for life in the wild, or because
some other phenotypic trait makes them less likely to thrive
after release (Tripovich et al., 2021). There is unlikely to be a
‘one size fits all’ rule for which individuals are most likely to
achieve reintroduction aims. Furthermore, external factors
such as release date and environmental conditions can affect
outcomes (Jackson, Schuster & Arcese, 2016). Conservation
practitioners should be prepared to attempt multiple, small-
scale ‘experimental’ releases to test a-priori hypotheses with rig-
orous post-release monitoring and refine bespoke strategies
though adaptive management. Such attempts can reveal use-
ful insights about how to improve reintroduction success
(Tripovich et al., 2021; Troy & Lawrence, 2021).

VI. FUTURE DIRECTIONS

Conservation resources are already limited in most coun-
tries, which means that the global ‘ark’ of captive-breeding
facilities is unlikely to be sufficient given the predicted scale
of biodiversity loss in coming decades (Ceballos et al., 2017).

Wherever possible, captive breeding should aim to re-estab-
lish self-sustaining wild populations that no longer need
intervention. If altered phenotypes unfit for the wild are
unavoidable in captivity, then it may be worth reconsider-
ing conservation aims, especially if the initial causes of wild
population decline, such as habitat loss, have not been
addressed (Caughley, 1994). For example, if captivity leads
to loss of migratory capacity (Tenger-Trolander
et al., 2019), or if there is no achievable way to protect a
mobile species from threats during migration (Stojanovic
et al., 2020), a sedentary version of a previously migratory
wild population could represent the best possible outcome.
As wild places becomemore fragmented and scarce, conser-
vation scientists and the general public alike may increas-
ingly face the need to adjust expectations so that even
‘imperfect’ phenotypes can persist in the wild. This is ethi-
cally complicated; if wide-ranging species can only survive
in small areas hemmed in by inhospitable habitats, then is
intentionally altering the phenotype of animals, e.g. by lim-
iting their scale of movement to avoid negative welfare out-
comes from unmitigated threats, actually the most ethical
solution? Exploring whether intentional alteration of
evolved phenotypes is ethical is likely to emerge as a major
issue in conservation biology in coming decades. Not every
species can be saved, and not all species that are saved can
live in the way they evolved prior to the Anthropocene.
However, this review points to untapped potential for
improving the phenotypes of captive-bred species so that
their fitness upon release into the wild is maximised.

(1) Outstanding questions

Our review identifies several knowledge gaps that can be dis-
tilled into the following questions:

(1) To what extent, and how rapidly can captive animals re-acquire

wild phenotypes post-release? Understanding the extent and
nature of the capacity of captive-bred animals to re-acquire
components of wild phenotypes will provide important
insights into the types of phenotypic changes that can be cor-
rected through adaptive management. Multi-generational
captive populations are becoming more common as insur-
ance against extinction, so understanding the risk of irrevers-
ible changes to phenotypes is important for evaluating the
suitability of these animals for future release.
(2) What is the relationship between captive phenotypes, fitness outcomes

and demographic responses of wild populations post-release? We
expect that these relationships may vary, but that the prevail-
ing relationship between divergent captive phenotypes and
post-release outcomes will be negative. Identifying these rela-
tionships will require detailed monitoring of phenotypes and
fitness both in captivity and post-release.
(3) How does the ratio of captive-bred to wild conspecifics affect the

maintenance or re-establishment of wild animal behaviours? Since
many behaviours are acquired through cultural conformity,
we predict that the lower the ratio of captive-bred to wild
conspecifics, the greater the capacity for captive-bred
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individuals to acquire wild behavioural phenotypes. This will
in turn affect the timing and location of reintroductions, as
well as cohort size.
(4) How important is age at release in determining the phenotypic costs

of captivity? Many phenotypic traits such as vocalisations and
predator aversion are acquired in early life. We therefore
predict that releasing younger animals will reduce the pheno-
typic costs of captivity because they have (i) greater capacity
to acquire behaviours important for survival in the wild,
and (ii) fewer opportunities to acquire negative phenotypic
traits associated with prolonged periods in captivity.
(5) How pervasive are links between phenotypic traits and how do they

interact with each other? Changes to any one phenotypic com-
ponent are likely to impact on other phenotypic compo-
nents both in captivity and post-release (Table 1). The
nature and extent of these links remain poorly resolved, so
experimental approaches will be key to understanding bet-
ter the links between components of the captive phenotype
and how they can be addressed through husbandry and
release protocols.

Answering these questions will require a closer look at the
phenotypes of captive animals, and better integration of the
outcomes of captive breeding with the fate of wild popula-
tions (Fig. 2). Importantly, we suggest that much theoretical
knowledge to aid the refinement of reintroduction pro-
grammes could be gained from studies on species still com-
mon in the wild, thus overcoming sampling constraints
inherent in experimental studies of endangered populations.
Addressing these knowledge gaps will provide important
insights into the ways that reintroduction efforts can be
improved to address the conservation and ethical challenges
that loom on the horizon for biodiversity in a changing
world.

VII. CONCLUSIONS

(1) There is evidence across a range of taxa that animal phe-
notypes can change as a result of captivity.
(2) These effects vary from obvious deviations from (often
poorly defined) wild phenotypes, to subtle changes that may
go undetected.
(3) Captive-breeding programs should attempt to identify
the multiple ways that captivity can affect animal pheno-
types, because the phenotypic quality of animals bred for
release is as important to conservation success as their
quantity.
(4) Failure to detect, prevent or correct phenotypic changes
arising from captive life can result in mortality of individuals
and failure of expensive conservation programs.
(5) Adaptive management approaches that explicitly con-
sider the links between different elements of captive-breeding
programs and fitness in the wild post-release are essential to
mitigating the phenotypic costs of captivity.
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