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Occupancy modelling using data collected by repeatedly sampling sites is a common approach utilised by
land managers to understand species distributions and trends. Two important factors that can complicate
interpretation of these models are imperfect detection and spatial autocorrelation. We examine the effect
of these potential errors using a multi-year data set on the distribution of the migratory and endangered
swift parrot (Lathamus discolor). We simultaneously account for these effects by extending a zero-inflated
Binomial (ZIB) framework to allow the inclusion of semiparametric, smooth spatial terms into both the

gee{ :Vc‘i::)si"m occupancy and detection component of the model, in a maximum likelihood framework easily imple-
EM Al gorithsin mented in common software. This approach also has the advantage of relatively straightforward model

selection procedures. We show that occupancy and detectability were strongly linked to food availability,
but the strength of this relationship varied annually. Explicitly recognising spatial variability through the
inclusion of semiparametric spatially smooth terms in the ZIBs significantly improved models in all years,
and we suggest this predictor is an effective proxy for unmeasured environmental covariates or conspe-
cific attraction. Importantly, the spatially explicit ZIBs predicted fewer occupied sites in more defined
areas compared to non-spatial ZIBs. Given the importance of predicted distributions in land management,
habitat protection and conservation of swift parrots, these models serve as an important tool in under-
standing and describing their ecology. Our results also reinforce the need for designing surveys that cap-
ture the underlying spatial structure of an ecosystem, especially when studying mobile aggregating
species.

Spatial autocorrelation
Lathamus discolor
Zero-inflated Binomial models
Species distribution modelling
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1. Introduction Highly mobile, rare or cryptic species can be difficult and

expensive to monitor. Because resources are often limited, collect-

Effective population monitoring is fundamental to threatened
species management and conservation planning (Martin et al.,
2007; Sanderson et al., 2006). The importance of developing effec-
tive monitoring designs and analytical approaches has generated
considerable discussion (Reynolds et al, 2011; Rhodes and
Jonzén, 2011; Wintle et al., 2010), particularly regarding the need
to identify and account for sources of error. When the results of
monitoring identify the need for management responses that are
contentious, expensive or impact on industry, accounting for error
becomes especially important (Martin et al., 2007).
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ing detection/non-detection data from a sample of sites to be ana-
lysed within an occupancy-modelling framework is a popular
approach among land management agencies (Kéry et al., 2013).
Consequently, occupancy models and the relationship between
occupancy and abundance, have been used extensively to estimate
species density, distributions and habitat associations (e.g. Gaston
et al., 2000; Hui et al., 2006). Estimating and accounting for false
negative error rates or detection probability is fundamental to
improving the reliability of occupancy models (MacKenzie et al.,
2002; Martin et al., 2005; Royle and Nichols, 2003; Tyre et al.,
2003; Wintle et al., 2004). The most common approach involves
repeatedly sampling sites to estimate detection probability p,
defined as the probability a species will be detected in a single site
visit given that it occupies that site (MacKenzie et al., 2002). The
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detection process is commonly influenced by the behaviour and
abundance of the target species (Gu and Swihart, 2004;
McCarthy et al., 2013), and if there is spatial or temporal heteroge-
neity in p, establishing its relationships with environmental
variables can reduce bias in parameter estimators and improve
sampling strategies (e.g. Bailey et al., 2004; Gibson, 2011; Lahoz-
Monfort et al., 2014).

Errors in interpreting ecological relationships can also arise if
spatial autocorrelation (SAC) is ignored, or not accounted for in
the distribution of the target species (Dormann, 2007; Hawkins,
2012; Legendre, 1993). Generally, SAC originates from either an
autocorrelated environment (i.e. where nearby locations are more
similar than more distant ones) or through processes like conspe-
cific attraction and limited dispersal ability of the target species
(Lichstein et al., 2002). Importantly, recognition and analysis of
SAC can provide insights into ecological processes that may other-
wise be overlooked (Bini et al., 2009; Hawkins, 2012) and the effect
of spatial structure has been recognised as an important compo-
nent in modelling the occupancy-abundance relationship (Hui
et al., 2006).

Recently, considerable attention has focused on improving sta-
tistical methods to account for either SAC or imperfect detection;
however, relatively few studies have formally accounted for these
processes simultaneously (but see Aing et al., 2011; Bled et al,,
2011; Johnson et al., 2013; Royle et al., 2007). Some studies have
accounted for spatial correlation in discrete spatial domains
(Johnson et al., 2013; Royle et al., 2007; Wintle and Bardos,
2006), while others have focused on the detection process in tran-
sect based or cluster sampling designs (Aing et al., 2011; Guillera-
Arroita et al., 2010, 2012; Hines et al., 2010). Other approaches
model spatial variability through the inclusion of spatially corre-
lated random fields (Diggle et al., 1998; Post van den Burg et al.,
2011). Most of these studies, and other occupancy models that
contain autocorrelation structure adopt a hierarchical Bayesian
perspective (see also Gardner et al., 2010; Hoeting et al., 2000;
Sargeant et al., 2005).

In this study, we use the endangered swift parrot (Lathamus dis-
color) to illustrate the importance of accounting for SAC and detec-
tion when modelling the distribution of mobile, cryptic and
threatened species. Swift parrots are a migratory nectarivorous
species seriously threatened by anthropogenic habitat loss
throughout their range (Higgins, 1999). Their breeding range is
restricted to the island of Tasmania, Australia, where they nest in
tree hollows and rely on the erratic flowering of the Tasmanian
blue gum (Eucalyptus globulus subsp. globulus) and black gum
(Eucalyptus ovata) for food (Webb et al., 2012). However, there
are few empirical data that quantify the relationship between nec-
tarivores and flowering at macroecological scales. The very specific
nesting and food requirements of the swift parrot, and the need for
hollows and flowering to occur in the same area, make the species
highly vulnerable to the effects of continuing habitat degradation
and loss (Webb et al., 2012).

A key question for land managers is: how much habitat needs to
be protected to conserve the species? Approximately one-third of
the swift parrots potential breeding habitat is afforded varying lev-
els of protection through the Comprehensive, Adequate and Repre-
sentative (CAR) Reserve System (see Commonwealth of Australia,
1992). However, conservation (or protection) of non-reserved land
(e.g. private land, production forest) that contains breeding habitat
is highly contentious (Allchin et al., 2013) and can have serious
economic implications for stakeholders. In this context, the relative
importance of a particular area to swift parrots is often heavily
scrutinised, especially where information is limited. Accurate,
annual spatiotemporal information on the distribution of swift
parrots, and the availability of their nesting and feeding habitat,
is required to identify ecologically relevant spatial scales of

management, prioritise key sites or regions, develop and inform
off-reserve management actions, and set spatially explicit thresh-
olds for habitat loss.

Given the dependence of swift parrots on flower for food, its use
as a key explanatory variable was a logical starting point for our
analyses. However, it is likely that other environmental or behav-
ioural factors also influence occupancy and detection. From a logis-
tical or economic perspective, it is often difficult to identify or
measure these factors. We hypothesised that explicitly incorporat-
ing a smoothed spatial covariate in the occupancy and/or detect-
ability component of zero-inflated Binomial models (ZIB) in a
generalised additive model (GAM) framework, should help explain
a large proportion of the variation due to these unknown or
unmeasured factors. Our approach models the autocorrelation
through smoothed functions of spatial coordinates where space
is viewed as inherently continuous. This is in contrast to
approaches that discretize space into regions or sites, and model
spatial correlation through correlated random effects defined over
sites in a Bayesian hierarchical framework (e.g. Bled et al,, 2011;
Johnson et al., 2013 and references therein; Wintle and Bardos,
2006). Our approach is more similar to geostatistical models in
which spatial variability is modelled as spatially correlated random
fields (e.g. Diggle et al., 1998; Post van den Burg et al., 2011). How-
ever, by modelling spatial variability through smooth functions of
spatial coordinates rather than correlated random fields, our mod-
els can be fitted with standard maximum likelihood methods
avoiding the need for complex Markov Chain Monte Carlo
techniques.

Here we describe the design and implementation of a monitor-
ing program, and associated analytical techniques, to better
understand the spatial ecology of swift parrots and inform a land-
scape-scale conservation management strategy. We fitted Binomial
models (with perfect detection), and zero-inflated Binomial models
(that accounted for imperfect detection) with and without a smooth
spatial covariate in GAM and generalised linear model (GLM)
frameworks respectively, to test our hypothesis about the impor-
tance of spatial location. Using these models, we mapped the pre-
dicted distribution of swift parrots to illustrate dramatic
spatiotemporal variation in their occurrence and detectability,
while highlighting the importance of accounting for SAC. We also
used simulated spatially structured data to form more generalised
insights from our models.

2. Methods
2.1. Study area and sampling regime

We sampled across the known breeding range of the swift par-
rot (broadly defined by the natural range of E. globulus), which is
restricted to Tasmania and covers approximately 10,000 km?
(Fig. A1, Webb et al., 2012). Swift parrot detection/non-detection
data were collected by repeatedly sampling a number of distinct
sites over a three-week period in October 2009-2012 (number of
sites ranged from 771 to 1034). A site was defined as a 200 m
radius around a fixed point and the number of site visits, across
all years, ranged from one to eight with a mean of 2.4 (see Appen-
dix A for detailed sampling protocols). Flowering intensity (0-4
scale) was also recorded during these visits. Minimizing the
amount of time taken for each annual survey reduced the likeli-
hood of changes in detectability and violation of the assumption
of closure, which is inherent in the models utilised (MacKenzie
et al., 2006; Rota et al., 2009). A small subset of sites (n=16) from
the north-west of Tasmania that were geographically distinct from
the rest of the sites (Fig. A1) was not used in the analyses to reduce
their disproportionate impact as spatial outliers.
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2.2. Spatial structure

The degree of SAC in the data was assessed using correlograms
(based on Moran’s I - Tiefelsdorf, 2000) of detection/non-detection
(0, 1) and flowering score (0, 1, 2, 3, 4) for each year using Spatial
Analyses in Macroecology v4 (SAM, Rangel et al., 2010).

2.3. Model form

While recognising that a range of factors potentially influence
the probability of occupancy (¥) and probability of detection (p)
of swift parrots, we deliberately kept the models simple, restricting
the covariates to just flower and a semiparametric, smooth spatial
term. Flower is recognised as a key driver of avian nectarivore dis-
tribution (Mac Nally and McGoldrick, 1997) and we hypothesised
that other unmeasured environmental or behavioural factors
would be captured by the spatial covariate. We also used the odds
ratio of the flower coefficient to quantify the strength of its effect in
the models.

Two classes of models were considered, a simple Binomial,
where we assume p to be perfect and a ZIB, which accounts for
imperfect detection. For the simple Binomial (Eq. (1)), y; is a binary
indicator that is 1 if the target species was detected on any visit to
site i, and O otherwise.

Yi ~ Binomial(1, ¥;) (1)

Here ¥ is the probability that the target species is present at site i
(assuming perfect detection), and is a function of the covariates.

The second class of models (ZIBs) assume that any site is either
continuously occupied or unoccupied during the survey period, but
detection is imperfect (but constant across the survey period).
Hence, if the site is occupied, there is no guarantee the target spe-
cies will be detected on any individual visit, and the observed
detections are modelled with a zero-inflated Binomial distribution
(Hall, 2000) (Eqgs. (2a) and (2b)). In this case

Y; ~ Binomial(n;, z;p;) (2a)

Z; ~ Binomial(1, ¥;) (2b)

where now y; represents the number of times the target species was
detected in n; visits to the site. z; is a latent binary variable that indi-
cates whether a site is truly occupied. Here, z; = 1 if the site is occu-
pied and z; = 0 if the site is unoccupied, and so y; > 0 implies z;= 1
and z;=0 implies y; = 0. Again, ¥; is the probability that site i is
occupied, and p; is the conditional probability that a detection will
occur on any single occasion if the site is occupied (assuming that
detections occur independently). In turn, the probabilities of ¥;
and p; can be related to site-specific covariates.

2.4. Model fitting

Data were analysed for each year separately. First, we fitted the
standard Binomial model using logistic regression with ¥ as a
function of the variable flower (F) (Eq. (3)) using library glm in R
(R Development Core Team, 2013). In vector notation

log(¥/1 — W) = o+ By F (3)

where ¥ is now the vector of probabilities that the target species is
present at the sites, and F the vector of flower scores.

Autologistic models (Augustin et al., 1996) were then fitted,
again with ¥ as a function of flower but with the addition of a spa-
tial autocovariate (calculated using the default settings in SAM
v4.0, logistic regression module) (Eq. (4)). Again, in vector notation

log(¥Y/1 - ¥)=oa+ p;F+cWy (4)

Here Wy represents the spatial autoregressive term, where y is now
a binary vector indicating the presence or absence of the target spe-
cies at each of the sites, W is the spatial relationship matrix that
reflects the relation between each site and its neighbours, and c is
the autoregressive parameter.

As a third alternative, we used the mgcv library in R (Wood,
2004) to fit a Binomial GAM that modelled ¥ as a function of flower
and a smooth function s(lat, lon) of location covariates (Eq. (5)). We
allowed the mgcv package to select the appropriate level of
smoothing.

log(¥/1 - V) = o+ p;F + s(lat, lon) (5)

To examine the effect of adding a spatial covariate, we also
compared the amount of SAC remaining in the residuals of each
model fitted. AIC scores were used to rank the overall fit of the
models (Burnham and Anderson, 2002).

Three approaches were used to fit the ZIBs. First, data were ana-
lysed separately for each year in program PRESENCE (Hines, 2012),
where both ¥ and p are a function of flower. In principle, the ZIBs
can also be fitted using VGAM package in R (Yee, 2010) and this
package was used to fit ZIBs with flower as the only predictor.
However, extensive tests on simulated data found VGAM ZIBs to
be unreliable when a spatial covariate was added. Specifically, they
would not converge with a spatial covariate term (i.e. the ZIB
equivalent of Eq. (5)) and this approach was not pursued. Instead,
ZIBs with the smooth location covariate were fitted using the EM
Algorithm (Dempster et al., 1977) implemented in R (R Core
Development Team, 2013). The EM Algorithm is an iterative proce-
dure for deriving maximum likelihood estimates in the presence of
missing data. The ZIB model can be fitted with the EM Algorithm
by treating the latent z; as missing data. Starting from an initial
estimate, the EM Algorithm is an iterative two-step process that
generates a sequence of estimates guaranteed to converge to the
maximum likelihood estimate (see Appendix B for full details).
While, circumstances exist where the ZIB model is degenerate,
(e.g. with only one visit it is not possible to separate detection from
occupancy); here we assume that sites are sampled sufficiently
often that the likelihood has a unique maximum. To the best of
our knowledge, this is the first successful implementation of ZIB
occupancy models that incorporate a smoothed spatial covariate
in a GAM framework using empirical ecological data. AICs were
again used to compare the fit of all ZIBs, with the exception of
the PRESENCE models, which were not comparable to other models
due to differences in the way maximum likelihood is computed.

2.5. Predictions of occupancy and detectability

To compare predictions among all models, we generated spa-
tially explicit estimates for ¥ (simple Binomial models and ZIBs)
and p (ZIBs only). To better visualise the results, we interpolated
the predictions at ecologically relevant scales (kriging with 0.02°
pixel size, maximum of 50 neighbours and neighbour search radius
of 0.05° (~5 km)) across the study area (implemented in Manifold
Systems Professional V8 GIS software).

2.6. Simulations

Although we demonstrated that the EM Algorithm could be
used to fit ZIBs, it was unclear whether these models were identi-
fiable when the probabilities of ¥ and p are related to site specific
covariates, or whether spatial variability in p will be confounded
with variability in ¥. If the two components cannot be clearly dis-
tinguished, there may be no value in fitting models that explicitly
represent both p and V. To address these issues, we first used sim-
ulated data to test if the model was indeed identifiable, and that
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Summary of the frequency of flower score (0, 1, 2, 3, 4) and the number of sites where swift parrots were detected, 2009-2012.

Flower score 2009 Sites birds detected 2010 Sites birds detected 2011 Sites birds detected 2012 Sites birds detected
0 586 16 373 28 787 35 621 29
1 70 3 149 29 83 20 135 16
2 61 16 138 35 85 33 103 32
3 45 31 152 54 46 23 100 54
4 9 6 38 13 33 26 27 21

variability in p could be distinguished from variability in Y.
Second, we qualitatively compared the fit of the ZIBs with a pres-
ence-absence (or detection/non-detection) Binomial model
(directly analogous to our simple GAMs).

We simulated data by generating N random sites distributed
uniformly on the [0, 1] x [0, 1] square. Predictors were calculated
for each site and used to construct the probability of occupancy
at a site, and the probability of detecting the target species if the
site is occupied. In these simulations, at least one visit was con-
ducted at every site, and the number of additional visits was
assumed to be Poisson distributed. Three of the predictors used
were smooth functions of space, with two being sinusoids and
the third a plane while the remaining two predictors were uniform
random fields. Full details of the simulations are provided in
Appendix C. The R code used to implement the EM Algorithm
and the simulations is provided in Appendix D.

3. Results
3.1. Overview

The frequency of flower scores and sites where swift parrots
were detected are summarised in Table 1. Naive occupancy (i.e.
proportion of sites where swift parrots were detected) over the
four years ranged from 0.094 to 0.187. Flowering conditions varied
between years (both in intensity and geographically), being gener-
ally very poor with localised flowering in 2009 (mainly in the
south-eastern region), a mast flowering event in 2010 (again high-
est in the south-east), localised flowering in 2011(north-eastern
region) and again in 2012 (mainly in the south) (Fig. 1).

3.2. Spatial structure

Correlograms indicated significant SAC in swift parrot detec-
tion/non-detection and Eucalyptus flowering in all years (Fig. 2a-
d). Flowering was significantly spatially autocorrelated (Morans I
test) out to a distance of 25-51 km and varied between years. In
2009, 2011 and a slightly lesser extent in 2012, the SAC in detection
followed a similar pattern to that of flower, and was spatially auto-
correlated out to approximately 30-35 km in those years; how-
ever, in 2010 detection was spatially autocorrelated out to a

distance of over 40 km with a less similar pattern to that of flower
(Fig. 2).

3.3. Models assuming perfect detectability (p=1)

Not surprisingly, given the evidence for spatial structure in the
data, all models improved (as indicated by lower AICs) when a spa-
tial covariate was added. The best performing model in each year
(where p was assumed to be perfect) was the Binomial GAM
(Table 2, see also Table Ala-d for all model coefficients and odds
ratios). Models in 2010 showed the most improvement after the
addition of the spatial covariate, which reflected the reduced spa-
tial dependency on flowering in that year. Odds ratios also showed
that flower was much less important as a predictor in 2010 com-
pared to other years (Table 2).

Correlograms of the residuals showed that the inclusion of the
spatial predictor in the GAM removed all significant, positive SAC
(Fig. A2a-d). In 2009 and 2011 (when flowering was more sparse
but locally concentrated), flower alone accounted for far more of
the spatial structure in the residuals compared to 2010 (Moran’s
I <0.1 in 2009 and 2011, and <0.2 in 2012 compared to 0.4 in
2010 in the first distance class, Fig. A2).

3.4. Zero-inflated Binomial models

Five ZIBs were fitted in each year (Tables 2 and A1). According
to AICs, the VGAM and EM Algorithm models without spatial
covariates were almost identical in their fit and all non-spatial ZIBs
had very similar coefficients (Table Al). Models with a spatial
covariate in either the ¥ and/or p component (i.e. GAM-ZIB frame-
work) were better than those without the spatial covariate (i.e.
GLM-ZIB framework) in all years (Table 2). The standard errors
computed through the EM Algorithm are unreliable, and in general
it is difficult to relate these to the true standard errors. Louis (1982)
shows that the complete data information matrix required to com-
pute the true standard errors can be expressed as the observed
data information matrix adjusted for the information missing
due to the missing observations (in our case, the true site occupan-
cies). In principle, this result can be leveraged to estimate the true
standard errors, but in practice this not a simple computation, and
we could not see how to implement this in the general case. There-
fore we have not included them in Table Al.
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Fig. 2. Spatial autocorrelation (Morans I) in swift parrot detection/non-detection
(black circles) and corresponding flower data (green diamonds) across the breeding
range, for years 2009-2012. Shaded areas represent non-significant spatial auto-
correlation (p < 0.05) as indicated by the Morans I test.

Odds ratios were again used to illustrate the relative impor-
tance of flower in the models. Odds ratios indicated that flower
was an important predictor in modelling both ¥ and p in 2012,
but had less influence on both components in 2010 (Table 2). By
contrast, there were more obvious differences in the relative
importance of flower between the ¥ and p components in 2009
(minimal influence on ¥, strong effect on p in the two best models)
and 2011 (very strong effect on Y, little predictive power for p
across all models).

3.5. Model predictions of ¥ and p

Predictions from the best simple GAMs (where p = 1) all showed
high probability of swift parrot presence in fairly discrete kernels
(Fig. 3a). These areas differed among years, suggesting that swift
parrots are not only flexible in their habitat utilisation, but also uti-
lised much of the available habitat over time. While these predic-
tions are useful for comparative purposes, from here on we focus
more on models that account for imperfect detection.

The inclusion of the spatial predictor in the p component of the
ZIB models highlighted considerably more heterogeneity in the
detection process than that observed in the models without spatial
covariates (mean range of p in spatial models = 0-0.89 cf. 0.22-
0.64 in non-spatial models, Fig. A3, A4a and b). The low estimates
of p in the spatial models were generally at sites geographically
disjunct from clusters of sites where birds were detected (i.e. the
informative sites for estimating p). This also resulted in markedly
different ¥ predictions, with generally high probabilities in a rela-
tively narrow range (mean range of ¥: 0.58-0.99; Fig. A4c). The
high predictions over the narrow range can largely be attributed
to uncertainty surrounding estimates at many sites where p was
very low, which in turn is likely related to the number of visits
(see also Appendix C - p6 and Fig. 13). Low detectability also con-
founded realistic occupancy predictions in the models that
included a spatial covariate in both components (Fig. A5a).

Although AIC scores suggested that models with the spatial
component in detection often performed better (Table 2), the
resulting ¥ predictions were clearly unsatisfactory (Figs. A4c,
A5a). For this reason we focus on ¥ estimates from ZIB models
with the spatial covariate only in the ¥ component. Non-spatial
ZIBs showed more diffuse predictions (Fig. 3b), and the range of
predictions was typically smaller than those models with a spatial
predictor in the ¥ component (mean ¥ range: 0.13-0.80 cf.
0-0.97, Fig. A6). Direct comparisons of the predictions indicate
non-spatial models (Fig. 3b) generally over and underestimate ¥
compared to models with a spatial covariate (Fig. 3c).

ZIBs with the spatial covariate in the ¥ component provided
similar predictions to the simple Binomial GAMs, with concen-
trated kernels of high probability and areas of low probability over
much of the breeding range (Fig. 3a and c). Despite the apparent
visual similarities of the predictions from the two models, site-
by-site comparisons clearly highlighted the influence of p on ¥
predictions (Fig. A7). For example, in 2010 there was close agree-
ment between ¥ estimates (Fig. A7), with relatively constant p
across the range (Fig. A8). By contrast, in 2009 there was much less
agreement in predictions between the two models (Fig. A7). This
year differed from others in that a relatively high proportion of
sites were only visited once (~50%), and these had very low esti-
mates of p (median < 0.1 - Figs. A3a, A8).

3.6. Simulations

The simulations showed that when p was constant, both the
zero-inflated and simple Binomial models detect the factors influ-
encing ¥, including spatial structure (Appendix C). However, con-
sistent with the empirical results reported above, when p varies,
the ZIB is able to separate factors influencing p and ¥ (Fig. 4). By
contrast, the simple GAMs (where p = 1) confound the factors influ-
encing p with those influencing ¥ and conflate these estimates
(Fig. 4, Appendix C). For example, if we take several forms of clear
spatial structure (Fig. 4a) and incorporate them into our simulated
models, the linear trend (f3 in Fig. 4a) in p across the domain is not
reflected in the fitted smooth of the ¥ component of the ZIB
(Fig. 4b). However, estimates of ¥ from the simple GAM suggest
that the latter both overestimates and underestimates ¥ across
much of the space (Fig. 4c). Similarly, in Fig. 4d, the spatial trends
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Form of models fitted and corresponding AIC values where ¥ = probability of occurrence, p = probability of detection and bracketed terms represent the covariates included in the
models. Flower = score 1-4; s(lat, lon) = bivariate smooth location term. Note that the AICs of the simple models and the AICs of the zero-inflated Binomial models (ZIBs) are not
comparable; AICs for PRESENCE model are not comparable with those fitted with the EM Algorithm and AICs are not comparable across years.

Model Implementation AIC (2009) AIC (2010) AIC (2011) AIC (2012)

P (flower)-p(1) SAM* 288 756 571 631.5
Y(flower + cW)-p(1) SAM* 251 509 458 488

¥ (flower + s(lat, lon)-p(1) R-package: mgcv” 237 (5.0)f 507 (1.6)' 447 (3.0)f 473 (2.8)
Zero-inflated Binomial models

¥ (flower)-p(flower) PRESENCE® 689 1306 1006 1003
¥(flower)-p(flower) R-package: VGAM* Did not converge 1035 782 832

Y (flower)-p(flower) EM Algorithm*® 448 (2.8, 2.5) 1035 (1.8, 1.1) 782 (3.2, 1.4) 832 (2.2,2.0)
Y (flower)-p(flower + s(lat, lon)) EM Algorithm® 400 (1.5, 4.2) 807 (1.5, 1.4) 672 (5.9, 1.5) 683% (3.4, 2.2)
Y (flower + s(lat, lon))-p(flower) EM Algorithm*® 440 (2.6, 2.4) 808 (1.5, 1.1) 665° (6.7, 1.3) 694 (2.0, 1.9)
Y(flower + s(lat, lon))-p(flower + s(lat, lon)) EM Algorithm® 390% (1.9, 4.5) 783% (2.0, 1.4) 671 (7.2, 1.3) 686 (2.5, 2.4)

@ Spatial Ecology in Macroecology - Rangel et al. (2010).

> Wood (2004).

€ Hines (2012).

4 Yee (2010).

Implementation developed in this study (see Appendix B for details).
Denotes best models for p = 1.

e
f

& Denotes best ZIB. Odds ratios indicating the relative strength of the variable flower are shown in brackets after the AIC values.

in both ¥ and p are distinguished much more accurately in the ZIB
and while ¥ estimates from the simple GAM do capture some of
the spatial structure, they are clearly confounded by the factors
influencing p as well. For more details on the model simulations
and associated results see Appendix C.

4. Discussion

Our study demonstrates that complex and spatiotemporally
variable interactions between a difficult to study species and their
food source can be effectively monitored and modelled to inform
conservation management. Through the use of a smoothed spatial
covariate in occupancy models, we provide another tool that can
be used to address common challenges facing survey design and
associated distributional analyses that typically hamper monitor-
ing and conservation efforts for mobile, aggregating animal popu-
lations. Untangling the processes influencing detection and
occupancy is important for avoiding misleading inferences, espe-
cially as such processes are often inextricably linked, with some
clearly influencing both parameters while others may only affect
one or the other. We highlight the importance of accounting for
spatial autocorrelation, not only for modelling animal occurrence,
but also for understanding the detection process. Furthermore,
the potential of more flexible models (such as the GAM based mod-
els we utilise here) has been recognised, and while it has been sug-
gested that they may produce superior occupancy models, they
had yet to be implemented successfully with empirical data
(Martin and Fahrig, 2012).

Across all models, the importance of flower as a predictor
increased as its availability decreased (e.g. 2009). By contrast, the
importance of site location (i.e. the smoothed spatial covariate)
increased with the availability of flowering (e.g. 2010), suggesting
that other processes also influenced swift parrot distribution. The
empirical observations were supported by the simulations, which
demonstrated that incorporating the spatial covariate into ZIBs
allowed the spatial structure present in both ¥ and p to be identi-
fied, whereas the simple Binomial GAMs confound the factors
influencing ¥ and p. When spatial structure is present (as is typi-
cally the case for mobile, aggregating species), ignoring spatial
location in the absence of other explanatory variables when mod-
elling ¥ or p can mislead inferences. In the swift parrot models the
importance of the spatial covariate varied between ¥ and p in each
year. However, the inclusion of the spatial covariate in the p com-
ponent of the ZIB produced very low estimates (e.g. <0.01) for sites

that were geographically distinct from the informative sites (i.e.
sites where birds were detected), which in turn resulted in unreli-
able estimates of ¥ for those sites. Typically this can be attributed
to too few repeated visits (e.g. Guillera-Arroita et al., 2010), but can
also be related to the type of model fitted (and the interactions
between the occupancy and detectability component).

Notwithstanding these limitations, the spatially explicit esti-
mates of detectability may provide important insights into inter-
preting spatial variation in swift parrot population density. When
¥ and p both increase with a covariate, as they do in our study
with flower, this can indicate the abundance of the target species
is responding to the covariate (Yackulic et al., 2013). Such a trend
would suggest a positive abundance-occupancy and/or abun-
dance-detectability relationship (Gaston et al., 2000; McCarthy
et al., 2013). We argue that much of the heterogeneity in both ¥
and p in this study originates from variations in the abundance
of swift parrots over multiple spatial scales (i.e. from site to land-
scape scales). Here, the detection process is likely influenced by (i)
increased calling frequency as abundance increases at the site
level, and (ii) increased abundance of birds in the landscape sur-
rounding a site, increasing the probability of a bird being present
and therefore detected at a site when it is sampled. These complex
interactions highlight the importance of studying the ecological
mechanisms driving the occupancy/detection processes in spa-
tially structured systems, and understanding the response of
aggregated species distributions to the influence of environmental
drivers at different spatial scales (Hui et al., 2010; Martin and
Fahrig, 2012; Welsh et al., 2013).

The importance of testing and accounting for SAC will vary
depending on the scale and level of aggregation of the target spe-
cies and environmental predictors. The advantage of our approach
(i.e. smoothed spatial location) is that it provides a more natural
description of spatial structuring (or aggregation) because there
is no requirement for a priori groupings of sites into clusters, tran-
sects or discrete spatial domains (e.g. Aing et al., 2011; Hines et al.,
2010; Johnson et al., 2013), which can be arbitrary or ecologically
irrelevant (Guillera-Arroita et al., 2011). Our methods also provide
the potential to account for more sources of heterogeneity in ¥ or
p, and improve understanding of bias in parameter estimators. Our
approach is likely to be particularly relevant to surveys conducted
at large spatial scales in dynamic systems when few ecologically
relevant covariates are available, or when the scale of effect of an
environmental factor is unknown or varies across multiple tempo-
ral and spatial scales. For example, in this study flower is important
at the site level (i.e. 200 m radius), but our predictions also suggest
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Probability
of occupancy

Fig. 3. Prediction maps of swift parrot occupancy 2009-2012, showing: (a) simple generalised additive models; (b) standard zero-inflated Binomial models with generalised
linear models and no spatial covariate; and (c) zero-inflated Binomial models with the spatial covariate in the occupancy component only. Predictions are smoothed from
point data using kriging with a 0.02° cell size, 50 neighbours in a maximum 0.05° radius.

its effect operates at much larger spatial scales. Further, the scales
of effect vary from year to year depending on overall flowering
conditions.

While the geostatistical methods mentioned above also view
space as continuous, our approach provides an alternative with
the advantage of much simpler model selection procedures. We
hope this ease of implementation and model assessment makes
our method more accessible to land managers, which may not
always have the statistical knowledge to tackle complex problems
or the resources to implement more complex analytical tech-
niques. While our implementation using the EM Algorithm has
the disadvantage of not providing standard errors around esti-
mates, the improvement in the models, and consequent improve-
ment of occupancy estimates, identify discrete defined areas of
important habitat at ecologically relevant scales. On the whole,
we think it better to utilise the advantages of more flexible, GAM

based ZIBs (as noted by Martin and Fahrig, 2012), and suggest that
in many cases, a better model with no standard errors is more
informative than a weaker model with standard errors. While the
EM Algorithm implementation represents a compromise in this
respect, it is likely that future work will develop implementations
that include estimates of uncertainty.

Often budgetary and logistic constraints may prevent adequate
spatial replication to capture spatial structure and undertake mul-
tiple repeat visits. However, we show that devising a sampling
design that captures the underlying spatial structure of the study
system can be just as important as addressing imperfect detection.
Additionally, as recently noted by Johnson et al. (2013), exploiting
SAC may reduce the need for many repeat visits because spatial
dependence between sites compensates for the lack of temporal
replication. However, it is a trade-off, and we recognise that repeat
surveys will always decrease the likelihood of recording false
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Fig. 4. Fitted smooths from the GAM simulations when detectability varies across the domain: (a) the structure of the three spatially smooth predictors; (b) zero-inflated
Binomial model (ZIB) - occupancy (¥) spatial structure from f; and detectability (p) spatial structure from f3; (c) simple Binomial generalised additive mode (GAM) -
occupancy from model including f; and f3; (d) zero-inflated Binomial model - ¥ spatial structure from f, and p spatial structure from f;; and (e) simple Binomial GAM -
occupancy from model including f, and f3 (see Appendix C for further details and all simulated model comparisons).

absences. This study, together with other recent reviews, have
highlighted the value of considering and utilising multiple statisti-
cal frameworks to better understand underlying ecological mecha-
nisms, and to avoid misleading inferences (Martin and Fahrig,
2012; Welsh et al., 2013).

5. Implications for swift parrot conservation

Our study describes dramatic spatiotemporal variation in the
swift parrot population driven by the distribution of Eucalyptus
flowering. To our knowledge, this is the first population level study
of a highly mobile nectarivore to describe macroecological patterns
in distribution and demonstrate a spatial dependency on flowering.
Understanding the variation in importance of the spatial covariate
may provide insights into the mechanisms driving variations in the
abundance of swift parrots. The SAC not explained by flower may
be due to processes such as conspecific attraction or the omission
of other unmeasured but ecologically important explanatory vari-
ables (e.g. availability of nesting sites or variations in the density
of food trees). Similarly, the spatial covariate may explain larger
scale effects, whereby site quality (as perceived by swift parrots)
may also be dependent on flowering conditions at larger spatial
scales than our site level measurement.

The spatially explicit models developed here represent a sig-
nificant improvement on non-spatial models (as indicated by
AICs) and the associated predictions of ¥ are over much smaller
and more discrete areas. Improving models and associated
predictions in this way not only reduces uncertainty about the

species distribution, but also provides land managers with more
confidence in making decisions that affect other stakeholders.
Our findings are critical to informing these decisions because:
(i) only a fraction of the breeding range appears suitable (and
occupied) in most years (due to the co-occurrence of hollows
and flowering), but that fraction varies considerably between
years; (ii) we can identify focal regions for protection or restora-
tion (see Fig. 3c), and provide robust quantitative thresholds (i.e.
occupancy probability) on which to base these decisions; (iii)
they allow an assessment of habitat availability to better inform
the development of spatially explicit off-reserve conservation
strategies and; (iv) we provide an analytical framework for
understanding population level processes into the future (e.g.
predation risk - see Stojanovic et al., 2014) and the likely impacts
of climate change on flowering. Most importantly, we clearly
identify areas of the breeding range that need to be managed
in a way that provides enough habitat for the majority of the
population to breed and forage in a given year.

Our study was developed to tackle the challenges inherent in
devising an effective and informed conservation strategy for the
endangered swift parrot. Many other species behave in similar
ways, but due to statistical and logistic challenges, rigorous moni-
toring of their movements and ecology across multiple spatial
scales has not been possible (Newton, 2006). Our methods repre-
sent an effective tool for monitoring and modelling these difficult
to study species, and form the basis of an accessible analytical
framework to assist conservation managers in overcoming the bar-
riers to collecting informative and reliable distributional data.
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