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Abstract Apex predators are integral parts of every ecosystem, having top-down roles in food web mainte-
nance. Understanding the environmental and habitat characteristics associated with predator occurrence is para-
mount to conservation efforts. However, detecting top order predators can be difficult due to small population
sizes and cryptic behaviour. The endangered Tasmanian masked owl (Tyto novaehollandiae castanops) is a noctur-
nal predator with a distribution understood to be associated with high mature forest cover at broad scales. With
the aim to gather monitoring data to inform future conservation effort, we trialled an occupancy survey design to
model masked owl occurrence across ~800 km2 in the Tasmanian Southern Forests. We conducted 662 visits to
assess masked owl occupancy at 160 sites during July–September 2018. Masked owl site occupancy was 12%,
and estimated detectability was 0.26 (�0.06 SE). Cumulative detection probability of masked owls over four vis-
its was 0.7. Occupancy modelling suggested owls were more likely to be detected when mean prey count was
higher. However, low detection rates hindered the development of confident occupancy predictions. To inform
effective conservation of the endangered Tasmanian masked owl, there is a need to develop novel survey tech-
niques that better account for the ecology of this rare, wide-ranging and cryptic predator. We discuss the poten-
tial to combine novel census approaches that exploit different aspects of masked owl ecology to obtain more
robust and detailed data.
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INTRODUCTION

Predators are critical components of healthy ecosys-
tems. Predator presence/absence can be important in
shaping lower trophic levels (Ritchie & Johnson
2009); however, predators are globally threatened,
and their decline is a disproportionate threat to biodi-
versity (Sergio et al. 2006). Understanding the eco-
logical needs of predators is fundamental to
improving conservation management (Geary et al.
2018) but studying predators can be challenging due
to their often small, wide-ranging and cryptic popula-
tions (Ellis et al. 2014; Ramsey et al. 2015). Recent
methodological advances in modelling species occur-
rence while accounting for imperfect detection (i.e.
false absences), such as occupancy models that utilise
detection/non-detection data (MacKenzie et al.
2017), may be a practical way to estimate occurrence
of cryptic predators across large areas of potential
habitat.
Forest owls are top order carnivores that are glob-

ally threatened by deforestation (McClure et al.

2018). Forest owls may be nocturnal, mobile and
have low population densities, making it difficult to
study fundamental aspects of their ecology (Wintle
et al. 2005). Surveys for forest owls can generate
many false absences (Wintle et al. 2005); thus, over-
coming low detection probability is critical to
designing robust ecological studies for these species
(Mackenzie & Royle 2005). Forest owl surveys have
typically relied on nocturnal spotlight surveys cou-
pled with call broadcasts (Zuberogoitia et al. 2011).
Studies may aim to improve precision at the indi-
vidual survey level with loud call broadcasts and by
increasing search time at each site to overcome
cryptic behaviours. However, this approach limits
the spatial coverage achievable over large study areas
because individual surveys are time intensive. These
approaches also result in large effective sampling
units, which may only be proportionally occupied
(MacKenzie et al. 2017). Resulting data may exhibit
strong site level heterogeneity for covariates affecting
occupancy or detection at smaller scales (Efford &
Dawson 2012). For widespread species, trading-off
survey-level precision for increased spatial replica-
tion over large study areas can yield important
information about species ecology and habitat
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utilisation (Piorecky & Prescott 2006; Crates et al.
2017).
Spatial autocorrelation is another expected feature

in species occurrence data (Hawkins 2012). It arises
from spatially correlated environmental variables
(Lichstein et al. 2002), or similar occupancy probabili-
ties in neighbouring sample units (Webb & Merrill
2012), and its effect on the predictions of species
occurrence models is varied (Lichstein et al. 2002;
Hawkins 2012). Where spatial effects are present,
employing analytical methods that explicitly account
for spatial autocorrelation can improve occupancy esti-
mates (Piorecky & Prescott 2006; Webb et al. 2014).
Tasmanian masked owls, Tyto novaehollandiae cas-

tanops, are endangered but widespread, with a prefer-
ence for mature forest cover (Todd et al. 2019).
Accurate population estimates and information on
fine scale habitat preferences is limited (Bell et al.
1997; Mooney 1997), but because the species is
threatened, addressing these knowledge gaps is criti-
cal to informing conservation action. Here we exam-
ine whether habitat characteristics and prey
availability predict presence/absence of Tasmanian
masked owls across a forest landscape and evaluate
the efficacy of rapid surveys using call broadcast over
large scales. We applied an occupancy modelling
framework to survey habitat in an area subject to
widespread and intensive logging. We minimised
time spent at individual site visits in order to increase
spatial replication of small sample units across the
study area (Crates et al. 2017; Webb et al. 2017) to
better understand masked owl habitat occupancy (i.e.
use) at the landscape scale. We assess the degree of
spatial autocorrelation in our data and employ a sec-
ond analytical step to account for its possible effects
on occupancy estimation. We aim to advance knowl-
edge of the occurrence of masked owls because
deforestation may be threatening habitat before the
conservation requirements of Tasmanian masked
owls can be identified.

METHODS

Study area

We surveyed ~800 km2 across the southern forests of Tas-
mania, including forest patches in adjacent agricultural
landscapes. The study area ranged from sea level to
~700 m and was dominated by wet Eucalyptus forest, with
temperate rainforest and other mesic vegetation in the
understorey. These forests have been severely fragmented
by industrial logging (Webb et al. 2018) that created a
patchwork of cleared land, regenerating and old-growth
native forest and plantation (Hickey 1994). Mean minimum
and maximum temperatures in the region ranged from 0.7
to 12.8°C from July through September 2018 and average
monthly rainfall from 40 to 177 mm (BOM 2018).

Study design

Sites

A pilot study indicated that the masked owl call broadcast
was weakly audible to humans at <250 m distance from the
site centroid using an Ultimate Ears Megaboom. To ensure
observer ability to detect owl calls, we defined sites as a
200 m radius around the centroid. We selected 160 survey
sites across the study area (Fig. 1) with the aim of maximis-
ing site replication within mature habitat and on the basis
that they contained large mature eucalypts, ensuring the
presence of potential masked owl habitat. Selection was
made with the aid of the aerial forest inventories that quan-
tify the extent of mature, cavity bearing forest (FPA 2011)
and field assessments. Site selection was limited by road
conditions, safety, locked gates and private property lines.
Sites ranged from 500 to 2000 m between nearest neigh-
bours with a mean distance to nearest neighbour of
~750 m. 87 of these sites had previously been surveyed for
sugar gliders Petaurus breviceps (Allen et al. 2018) which are
an important prey species of masked owls, and predator of
swift parrots (Stojanovic et al. 2014).

Habitat characteristics

We used QGIS to derive altitude and proportion of mature
forest cover within 250, 500, 1000, 1500 and 2000 m radii
from the site centroid. We estimated mature forest cover
following (Stojanovic et al. 2012) using the aerial forest
inventories that quantify the extent of mature, cavity bear-
ing forest (FPA 2011). At each site, we used 25 9 20 m
quadrats to quantify fine scale habitat characteristics.
Within quadrats we recorded the following: (i) the number
of trees in seven diameter at breast height (DBH) categories
(10–20, 21–50, 51–100, 101–150, 151–200, 201–300 and
>300 cm), (ii) height of the tallest tree, (iii) the number of
mature tree crowns, (iv) percentage cover of the emergent
tree cover, (v) canopy cover, (vi) understory cover, (vii)
combined total cover, (viii) ground cover.

We estimated cover as the mean of the proportion of
field of view occupied in a 50 cm square at two points
within the quadrat.

Survey

We undertook repeated 10-min site visits (3–5 visits per
site) from July to early September of 2018. We chose win-
ter, to maximise call responses (Todd et al. 2018), poten-
tially arising from increased territoriality prior to breeding
(Mooney 1997). Surveys involved the following: (i) 2 min
of listening and scanning the forest with a thermal imaging
telescope (Pulsar Quantum Thermal HD XQ), (ii) 6 min
of intermittent masked owl call broadcast from a portable
speaker and (iii) 2 min of listening and scanning with the
thermal imaging telescope. We recorded masked owl detec-
tions (by sight or sound) throughout the survey period. We
observed potential prey species using a thermal imaging
scope and confirmed species (where possible) using binocu-
lars and spotlight during the 2 min preceding and following
the call broadcast. We conducted surveys from dusk until
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dawn. To reduce the potential effects of weather on detec-
tion likelihood, we only conducted surveys in fine condi-
tions with <10 km h�1 wind and no rain (Takats &
Holroyd 2006; Todd et al. 2019). We recorded the follow-
ing: (i) detection/non-detection of Tasmanian masked owl,
(ii) counts of prey (sugar glider, ringtail possum Pseu-
docheirus peregrinus, brushtail possum Trichosurus vulpecula
and other small ground and scansorial mammals (we did
not attempt to identify non-arboreal mammals to species);
(iii) temperature (0–5, 6–10 and >10°C); (iv) moon phase.
To estimate prey abundance at sites, we calculated mean
prey abundance at each site as ∑ (per visit prey count)/
number of visits. To estimate prey diversity at sites, we
pooled prey into five groups: (i) sugar glider, (ii) ringtail,
(iii) brushtail, (iv) small ground and (v) unknown arboreal.
Per visit prey diversity was the total number of prey groups
observed divided by five. Mean site prey diversity was ∑
(per visit diversity)/number of visits (i.e. detecting every
prey group at every visit would yield a mean diversity of 1).

Statistical analysis

Given that owl surveys are expected to produce many false
absences (Wintle et al. 2005), we first used an occupancy
modelling approach (MacKenzie et al. 2002) to fit single
season occupancy models in R (R-Core-Team 2018) using

the package unmarked (Fiske & Chandler 2011). This pack-
age fits zero-inflated binomial models to detection/non-de-
tection data and allow for site specific and survey specific
covariates to be fit with occupancy and detection probabil-
ity estimates, respectively (Fiske & Chandler 2011). Site-
level covariates that could influence masked owl occupancy
of a site were fitted in the occupancy component of models,
including the forest cover radii, altitude, habitat characteris-
tics derived from quadrats, mean site prey abundance and
the mean site prey diversity. Observation level covariates
(that could affect detection likelihood) were fitted in the
detection component of models and included temperature
and moon phase. Wind and precipitation were not included
as we controlled for these in the study design. Due to a
sparse dataset (see Results), we chose not to over-parame-
terise and to assess models with only a single term in detec-
tion and occupancy. We selected the best model using the
Akaike information criterion (AIC) where the best models
were Δ AIC < 2. Model fit was tested with a Mackenzie
and Bailey goodness of fit test, which tests whether a boot-
strapped v2 (chi-squared) statistic simulated from the
observed data is within the distribution of expected v2

(Mazerolle & Mazerolle 2017).
Given the likelihood of spatially correlated detections

from our study design, we assessed spatial autocorrelation
(SAC) in our data using spatial correlograms based on glo-
bal Moran’s I (Tiefelsdorf 2006) in the R package pgirmess

Fig. 1. The study region was across 800 km2 in the Tasmanian Southern Forests. Open circles indicate sites where Tasma-
nian masked owl were not detected and closed circles indicate sites where Tasmanian masked owl were detected.
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(Giraudoux et al. 2018). We used spatial simultaneous
autoregressive (SAR) models to account for the effects of
SAC at multiple spatial scales. SARs include a spatially
weighted matrix based on neighbourhoods by distance that
accounts for effects of neighbouring location values on the
response variable at each location (Kissling & Carl 2008).
We justify a simple spatial modelling process that does not
account for imperfect detection (Crates et al. 2017)
because, although our detection probability was low, our
survey effort was substantial and therefore our cumulative
detection probability is sufficiently high at most sites (Gar-
rard et al. 2008). We started with an elimination process
based on AIC scores in a generalised linear model (GLM
binomial) framework, for parameter reduction from a satu-
rated model. We then defined spatial simultaneous autore-
gressive models (SARs) for the best model, including
weighted matrices generated for multiple neighbourhoods
by distance bands ranging from 0.5 to 33 km radii, as a
spatial covariate. SARs were implemented in the spdep
package (Bivand et al. 2011) in R. We ranked the SARs
based on AIC scores.

RESULTS

We undertook 662 surveys over 160 sites, (median of
four surveys per site). We detected masked owls in
29 surveys at 19 sites. Table 1 summarises the key
habitat variables at each site.
Na€ıve masked owl occupancy was 0.12, approxi-

mately 2/3 the modelled occupancy estimate

(0.18 � 0.05 SE) assuming constant occupancy and
detection. Based on AIC scores (Table 2), the top
ranked model included a significant positive effect
of the mean prey abundance on the likelihood
of masked owl occupancy (model estimate: 1.79 �
0.773, z: 2.32, P: 0.02, Fig. 2) and assumed constant
detection (model estimate: �1.08 � 0.31, z: �3.49,
P: 0.0005). The other 2 top models based on Δ
AIC < 2 (Table 2) included a significant positive
effect of mean prey abundance on occupancy and a
positive, though not significant, effect of temperature

Table 1. Summary of habitat variables within site quadrats where masked owls were detected and were not detected. (a)
DBH 10–20 cm. (b) Other variables

Stem count 0–25 26–50 51–75 76–100 >100

(a)

Proportion of sites
Masked owl detected 0.37 0.16 0.26 0.11 0.11
Masked owl not detected 0.21 0.17 0.30 0.11 0.21

Habitat variable

Mean (standard deviation; standard error)

Masked owl detected Masked owl not detected

(b)

DBH 21–50 cm 8.9 (7.7) (1.8) 8.9 (7.2) (0.6)
DBH 51–100 4.2 (4.7) (1.1) 3.1 (4.0) (0.3)
DBH 101–150 0.5 (1.1) (0.2) 0.6 (1.2) (0.1)
DBH >151 1.3 (1.5) (0.3) 1.0 (1.5) (0.1)
Mature crowns (count) 15.3 (8.5) (2.0) 13.9 (8.6) (0.7)
Tallest tree (m) 45.3 (15.0) (3.4) 42.9 (13.0) (1.1)
Emergent tree cover (%) 25.2 (20.0) (4.6) 16.4 (17.9) (1.5)
Canopy cover (%) 32.1 (28.6) (6.6) 37.7 (24.6) (2.1)
Understory (%) 34.7 (25.2) (5.8) 42.3 (26.4) (2.2)
Combined total cover (%) 64.0 (22.4) (5.1) 70.0 (18.2) (1.5)
Ground cover (%) 71.6 (21.9) (5.0) 66.5 (24.5) (2.1)

†

Stems greater than DBH 200 cm were rare and pooled with all stems >150 cm.

Table 2. Model selection results for single season occu-
pancy models

Model nPars DAIC† logLik

φ (mean prey abundance).q(.) 3 0 �97.57
φ (mean prey abundance).

q(temperature)
4 0.93 �97.04

φ (mean prey abundance).
q(moon phase)

4 1.2 �97.17

φ (mean prey diversity).q(.) 3 3.63 �99.39
φ (mean prey diversity).

q(temperature)
4 4.3 �98.72

φ (mean prey diversity).
q(moon phase)

4 4.68 �98.91

φ (.).q(.) 2 13.48 �105.32

nPar, number of parameters.
†

AIC of the top model was 201.15.

doi:10.1111/aec.12929 © 2020 Ecological Society of Australia

4 A. CISTERNE ET AL.



(model estimate: 0.353 � 0.343, z: 1.03, P: 0.3) or
moon phase (model estimate: 0.188 � 0.211, z:
0.89, P: 0.4), on detectability. As neither temperature
or moon phase contributed significantly to the mod-
els (Δ AIC < 2) or significantly affected detectability,
we accepted the simpler model which included only
the effect of mean prey abundance and constant
detection. That model passed the Mackenzie and
Bailey goodness of fit test (P = 0.683, where H0 is no
difference between the observed and expected v2

statistics). Mean prey abundance ranged from 0 to
4.5 (mean: 0.29 � 0.05 SE). Given the estimated
detection probability of the preferred model was 0.26
(�0.06 SE), the cumulative probability of detecting
masked owls if they were present at a site was 0.7 by
the fourth visit (Fig. 3; Garrard et al. 2008).
Spatial correlograms demonstrated that masked owl

detection data were spatially autocorrelated at dis-
tances of 1–3.5 km (Fig. 4). The best fit GLM based
on AIC scores included a significant positive effect of
mean prey abundance (estimate 1.239 � 0.436 SE, z:
2.8, P = 0.004) and non-significant effects of altitude
(estimate �0.003 � 0.002 SE, z: �1.9, P = 0.06) and
mature forest cover at 500 m (estimate 2.378 � 1.258
SE, z: 1.9, P = 0.06). The best SAR model using the
GLM formula, and identified by AIC scores
(Table 3), included a weighted matrix for a distance
radius of 1 km as the spatial covariate. The contribu-
tion of altitude and mature forest cover at 500 m in
this model was small, indicated by a Δ AIC << 2

Fig. 2. The probability of masked owl occupancy with
increasing mean prey abundance at a site, predicted from a
single season occupancy framework, implemented in un-
marked. 160 sites in the Tasmanian Southern Forest region
were surveyed 3–5 times each for the Tasmanian masked
owl (using call broadcasts) and prey (using thermal imag-
ing). Shaded area is the 95% confidence interval for predic-
tions.

Fig. 3. Cumulative probability of detecting Tasmanian
masked owl, in the Tasmanian Southern Forest region
using a call broadcast, based on a constant detection proba-
bility of 0.26 determined from single season occupancy
model fit in unmarked. The black line indicates the cumula-
tive probability of detecting Tasmanian masked owl after
multiple site visits. The grey ribbon indicates the standard
error.

Fig. 4. Spatial autocorrelation (Moran’s I) of Tasmanian
masked owl detection/ non-detection in a single season
occupancy survey of the Tasmanian Southern Forests
region in winter of 2018. Grey dots present significant spa-
tial autocorrelation (P < 0.05) and black dots non-signifi-
cant spatial autocorrelation (P > 0.05).

© 2020 Ecological Society of Australia doi:10.1111/aec.12929
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between it and the next top model, with just mean
prey abundance (Table 3). We removed the insignifi-
cant terms for a final SAR model (q: 0.43 � 0.13, z:
3.2, P: 0.001) including only a significant positive
effect of mean prey abundance (estimate 0.2 � 0.03
SE, z: 5.9, P: <<0.0001). There was no significant
residual SAC in this final SAR model (Moran’s I:
0.003, P: 0.45).

DISCUSSION

The effects of habitat and vegetation characteristics on
masked owl site occupancy did not rank highly relative
to the prey models. However, only 19 sites were used
by masked owls during the survey period, and so we
interpret our results with caution. We found a positive
effect of mean prey abundance per site on the likeli-
hood of masked owl occupancy (Table 2). A model
with prey diversity also ranked highly (Table 2). Prey
counts were mostly low, and our confidence in esti-
mating the probability of owl occurrence at high mean
prey abundance was low (Fig. 2). Other predators
show high occupancy at sites where prey is predicted
to be more abundant (Martin et al. 2009; Harihar &
Pandav 2012) although, in those studies, rates of
predator detection are higher. Our data possibly
included multiple species, some unidentified and each
likely with their own site and survey-level detectability,
so we did not attempt to model the occurrence of prey
species. Still, our models indicate that prey availability
is likely to be an important factor predicting the occur-
rence of masked owls, and further information about
prey populations may yield insight into why some sites
are occupied and others are not. The prey species
detected in our study were diverse, with equally

diverse habitat preferences (Driessen et al. 1996; Lin-
denmayer et al. 2008; Cawthen & Munks 2012; Fan-
court et al. 2013). For example, the three arboreal
species are broadly distributed within mature forested
landscapes (Lindenmayer & Cunningham 1997; Allen
et al. 2018), whereas both the eastern barred bandicoot
and eastern quoll are common at the forest edge
(Driessen et al. 1996; Fancourt et al. 2015). In a region
of intensive logging and agriculture, prey community
assemblages, distributions and abundances will be
directly affected by land use (Kavanagh & Stanton
2005; Flynn et al. 2011) and changes to land manage-
ment (Driessen et al. 1996). Further research is
needed to confirm that masked owl habitat use may
reflect shifts in prey availability.
In our study, detection data were spatially autocor-

related, which can inflate occupancy estimates and
the effects of explanatory covariates (Lichstein et al.
2002; Hawkins 2012). Therefore, we employed ana-
lytical methods that separate spatial effects and inde-
pendent effects (Lichstein et al. 2002). In our
analyses, the occupancy predictions of spatial models
largely agreed with the predictions of occupancy
models; therefore, in our case it is likely that spatial
autocorrelation was not affecting the model esti-
mates. Given that spatial autocorrelation was present
at small distance classes (1–3.5 km), spatial depen-
dency may have resulted from an increased probabil-
ity of site occupancy due to the presence of multiple
occupied neighbouring sites within an owl home
range (Efford & Dawson 2012; Bardos et al. 2015).
Designing a survey where sites are spatially indepen-
dent for species for which home ranges are large and
the characteristics are unknown is problematic
(Efford & Dawson 2012). Spatially structured detec-
tion data can be exploited to estimate species density
and delineate home ranges (Chandler & Royle 2013);
however, these models require a higher density of
detections (Ramsey et al. 2015) than was achieved in
our survey. Therefore, we are unable to explicitly
attribute spatial structure in our data to masked owl
home range characteristics.
Poor detectability limits the precision of occupancy

models (; O’Connell Jr et al. 2006; Durso et al. 2011).
Employing methods that maximise detections can thus
improve occupancy estimation (Bailey et al. 2007;
Dupuis et al. 2011; Baumgardt et al. 2014; Specht
et al. 2017). Call broadcasts increase the detectability
of owls (Wintle et al. 2005); however, the effectiveness
of call broadcasts may be affected by many factors, for
example, distance, topography and habitat structure
affect the passage of sound (Efford & Dawson 2012)
or observer error (Takats & Holroyd 2006; Zubero-
goitia et al. 2011). Seasonal or other sources of varia-
tion in calling behaviour may also bias responses to
broadcasts (Zuberogoitia et al. 2019), though there is
no evidence for this in the Tasmanian masked owl

Table 3. Model selection results for simultaneous autore-
gressive (SAR) models

Terms†
Spatial

weights‡ (m) DAIC§ logLik

Altitude + mature forest
(500 m) + prey
abundance

1000 0 �24.38

Prey abundance 1000 0.2 �26.48
Altitude + mature forest

(500 m) + prey
abundance

750 4.3 �26.57

Prey abundance 750 5 �28.88

†

The terms included in the model; altitude at the cen-
troid, proportion of mature forest cover in a 500 m radius
around the centroid and the mean site prey abundance (av-
erage across all visits).

‡

Spatial weights matrix created on neighbourhood by the
distance indicated in metres.

§

The AIC of the top model was 62.8.
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(Todd et al. 2018). Our study design traded off time
spent at each site for greater spatial replication, cou-
pled with a softened call broadcast, targeted at masked
owls within our small sampling units. Our detection
probability is low, but consistent with other call broad-
cast studies (Todd et al. 2019); however, we detected
owls at fewer locations. When occupancy is low, a
sampling design with a high number of sites is advis-
able as detectability is estimated from occupied sites
(Mackenzie & Royle 2005). Given that both occu-
pancy and detectability were low (0.18 and 0.26,
respectively), our survey effort of medium repetition at
a high number of sites delivered an acceptable level of
precision (see simulations in Appendix S3; Mackenzie
& Royle 2005). A low occupancy rate may simply
reflect the species use of only a small fraction of their
large home ranges at a given time (Kavanagh & Mur-
ray 1996; McNabb et al. 2003; Wintle et al. 2005).
Delivering protection for masked owls will require

a broad knowledge of how they interact with forest
structure and the ecology of their prey. Masked owls
occupy large home ranges and may preferentially use
different habitat for foraging, roosting and nesting
(Kavanagh & Murray 1996; McNabb et al. 2003). It
may therefore be difficult to model the effects of
habitat characteristics with bird detections made
throughout the night. Sampling designs, for example,
that target dawn and dusk may have more power to
estimate the influence of mature forest characteristics
in masked owl occupancy associated with roosting
habitat. Detecting sparsely distributed, nocturnal,
mobile and cryptic species may be improved by iden-
tifying indices of occurrence (Harihar & Pandav
2012; Wolff et al. 2015), rather than trying to detect
individual animals. Scats, hair, feathers and foot-
prints are all indicators that a species occurs at a site
(Levy 1999; Johnson et al. 2013). Novel techniques
such as the use of detection dogs, trained to find owl
pellets (Wasser et al. 2012), could improve detection
of owls, irrespective of whether they are present at a
given site at the time of a survey. Presence of regurgi-
tated pellets may be associated with roosting and
nesting sites (Kavanagh 2002), which are important
habitats that may go undetected during call broadcast
surveys. Future study designs that incorporate multi-
ple methods of detection might increase detection of
the species across broader scales and contexts
(Nichols et al. 2008). The development of new meth-
ods of detection and survey designs is likely to
advance habitat models for the species.
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